Synthesis 2019; 51(11): 2379-2386
DOI: 10.1055/s-0037-1610698
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed C–P Cross-Coupling between (Het)aryl Halides and Secondary Phosphine Oxides

Gladis G. Zakirova
,
Dmitrii Yu. Mladentsev
,
Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, GSP-1, 119991 Moscow, Russian Federation   eMail: borisova.nataliya@gmail.com
› Institutsangaben
Results have been obtained under support of the Russian Science Foundation (RSF, Russia Grant No. 16-13-10451).
Weitere Informationen

Publikationsverlauf

Received: 11. Januar 2019

Accepted after revision: 07. Februar 2019

Publikationsdatum:
18. März 2019 (online)


Abstract

An efficient procedure for C–P bond formation via the palladium-catalyzed [Pd(OAc)2/dppf/Cs2CO3] reaction between dichloroheterocycles and secondary phosphine oxides was developed. The steric and electronic properties of substituents were varied to establish the scope and limitations of the method developed. By applying these conditions, a variety of new heterocyclic compounds bearing two tertiary phosphine oxides were successfully synthesized in moderate to excellent yields. After adjustments to the reaction conditions [Pd(OAc)2/dippf/t-BuOK], cross-coupling of secondary phosphine oxides with bulky (secondary or tertiary alkyl) substituents on the phosphorus atom was achieved. Extension of the methodology to monohalohetarenes and monohaloarenes was successfully carried out; once again, the steric and electronic properties of the halides were varied widely. The desired reaction occurred in all cases studied, giving high to excellent yields of product regardless of the nature and positions of substituents.

Supporting Information

 
  • References

  • 1 Gowrisankar S, Neumann H, Gordes D, Thurow K, Jiao H, Beller M. Chem. Eur. J. 2013; 19: 15979
  • 2 Decken A, Ilyin EG, Jenkins HD, Nikiforova GB, Passmore J. Dalton Trans. 2005; 3039
  • 3 Amorin DR, Ouizem S, Dickie DA, Hay BP, Podair J, Delmau LH, Paine RT. Polyhedron 2015; 102: 103
  • 4 Bannister RD, Levason W, Light ME, Reid G. Polyhedron 2018; 154: 259
  • 5 Aparna K, Krishnamurthy SS, Nethaji M. J. Chem. Soc., Dalton Trans. 1995; 2991
  • 6 Borisova NE, Kharcheva AV, Patsaeva SV, Korotkov LA, Bakaev S, Reshetova MD, Lyssenko KA, Belova EV, Myasoedov BF. Dalton Trans. 2017; 46: 2238
  • 7 Matveeva AG, Kudryavtsev IYu, Pasechnik MP, Vologzhanina AV, Baulina TV, Vavina AV, Sukat GYa, Matveev SV, Godovikov IA, Turanov AN, Karandashev VK, Brel VK. Polyhedron 2018; 142: 71
  • 8 Moon J, Nilsson M. Dalton Trans. 2018; 47: 15424
  • 9 Weber R, Englert U, Ganter B, Keim W, Mothrath M. Chem. Commun. 2000; 1419
  • 10 Denmark SE, Smith RC, Tymonko SA. Tetrahedron 2007; 63: 5730
  • 11 Berger O, Petit C, Deal EL, Montchamp JL. Adv. Synth. Catal. 2013; 355: 1361
  • 12 Hu G, Chen W, Fu T, Peng Z, Qiao H, Gao Y, Zhao Y. Org. Lett. 2013; 15: 5362
  • 13 Jablonkai E, Keglevich G. Tetrahedron Lett. 2013; 54: 4185
  • 14 Jablonkai E, Balázs LB, Keglevich G. Phosphorus, Sulfur Silicon Relat. Elem. 2015; 190: 660
  • 15 Keglevich G, Jablonkai E, Balázs LB. RSC Adv. 2014; 4: 22808
  • 16 Keglevich G, Henyecz R, Mucsi Z, Kiss NZs. Adv. Synth. Catal. 2017; 359: 4322
  • 17 Rummelt SM, Ranocchiari M, Bokhoven JA. Org. Lett. 2012; 14: 2188
  • 18 Uozumi Y, Tanahashi A, Lee S, Hayashi T. J. Org. Chem. 1993; 58: 1945
  • 19 Zhang J, Chen T, Yang J, Han L. Chem. Commun. 2015; 51: 7540
  • 20 Nishiyama Y, Hazama Y, Yoshida S, Hosoya T. Org. Lett. 2017; 19: 3899
  • 21 Trost BM, Radinov R. J. Am. Chem. Soc. 1997; 119: 5962
  • 22 Sobhani S, Zeraatkar Z. Appl. Organomet. Chem. 2016; 30: 12
  • 23 Zhao Y, Wu G, Li Y, Gao L, Han F. Chem. Eur. J. 2012; 18: 9622
  • 24 Zhang H, Sun M, Ma Y, Tian Q, Yang S. Org. Biomol. Chem. 2012; 10: 9627
  • 25 Zhang X, Liu H, Hu X, Tang G, Zhu J, Zhao Y. Org. Lett. 2011; 13: 3478
  • 26 Bloomfield AJ, Herzon SB. Org. Lett. 2012; 14: 4370
  • 27 Xuan J, Zeng T, Chen J, Lu L, Xiao W. Chem. Eur. J. 2015; 21: 4962
  • 28 Newkome GR, Hager DC. Tetrahedron Lett. 1978; 947
  • 29 Ziessel R. Tetrahedron Lett. 1989; 30: 463
  • 30 Pietraszkiewicz M, Klonkowski A, Staniszewski K, Karpiuk J, Bianketti S. J. Alloys Compd. 2004; 380: 241
  • 31 Alonso RA, Bardon A, Rossi RA. J. Org. Chem. 1984; 49: 3584
  • 32 Snider TE, Morris DL, Srivastava KC, Berlin KD. Org. Synth. 1973; 53: 98
  • 33 Issleb K, Brack A. Z. Anorg. Allg. Chem. 1954; 277: 258
  • 34 Zhang J, Chen T, Yang J, Han L. Chem. Commun. 2015; 51: 7540
  • 35 Li C, Lu J, Zhang Z, Zhou K, Li Y, Qi G. Res. Chem. Intermed. 2018; 44: 4547
  • 36 Damian K, Clarke ML, Cobley CJ. Appl. Organomet. Chem. 2009; 23: 272
    • 37a Hirao T, Masunaga T, Ohshiro Y, Agawa T. Tetrahedron Lett. 1980; 21: 3595
    • 37b Hirao T, Masunaga T, Ohshiro Y, Agawa T. Synthesis 1981; 56
    • 37c Hirao T, Masunaga T, Yamada N, Ohshiro Y, Agawa T. Bull. Chem. Soc. Jpn. 1982; 55: 909
    • 38a Jablonkai E, Keglevich G. Curr. Org. Synth. 2014; 11: 429
    • 38b Jablonkai E, Keglevich G. Org. Prep. Proced. Int. 2014; 46: 281
  • 39 Zhao Y, Wu G, Han F. Chem. Commun. 2012; 48: 5868
  • 40 Yang J, Xiao J, Chen T, Yin S, Han L. Chem. Commun. 2016; 52: 12233
  • 41 Isshiki R, Muto K, Yamaguchi J. Org. Lett. 2018; 20: 1150
  • 42 Zakirova GG, Mladentsev DYu, Borisova NE. Tetrahedron Lett. 2017; 58: 3415
  • 43 Macgregor SA. Chem. Soc. Rev. 2007; 36: 67
  • 44 Hays HR. J. Org. Chem. 1968; 33: 3690
  • 45 Achard T, Giordano L, Tenaglia A, Gimbert Y, Buono G. Organometallics 2010; 29: 3936