Synthesis 2019; 51(03): 704-712
DOI: 10.1055/s-0037-1610996
paper
© Georg Thieme Verlag Stuttgart · New York

Cleavage of Catechol Monoalkyl Ethers by Aluminum Triiodide–Dimethyl Sulfoxide

Dayong Sang
,
Juan Tian*
Jingchu University of Technology, 33 Xiangshan Road, Jingmen, Hubei 448000, P. R. of China   Email: Tianjuan@jcut.edu.cn
,
Xiaodong Tu
,
Zhoujun He
,
Ming Yao
› Author Affiliations
This work was supported by Jingchu University of Technology (QDB201707) and Hubei Provincial Department of Education (B2018234).
Further Information

Publication History

Received: 25 July 2018

Accepted after revision: 31 August 2018

Publication Date:
26 September 2018 (online)


Abstract

Using eugenol and vanillin as model substrates, a practical method is developed for the cleavage o-hydroxyphenyl alkyl ethers. Aluminum oxide iodide (O=AlI), generated in situ from aluminum triiodide and dimethyl sulfoxide, is the reactive ether cleaving species. The method is applicable to catechol monoalkyl ethers as well as normal phenyl alkyl ethers for the removal of methyl, ethyl, isopropyl, and benzyl groups. A variety of functional groups such as alkenyl, allyl, amide, cyano, formyl, keto, nitro, and halogen are well tolerated under the optimum conditions. Partial hydrodebromination was observed during the demethylation of 4-bromoguaiacol, and was resolved using excess DMSO as an acid scavenger. This convenient and efficient procedure would be a practical tool for the preparation of catechols.

Supporting Information

 
  • References

  • 1 Bhatt MV. Kulkarni SU. Synthesis 1983; 249
  • 2 Weissman SA. Zewge D. Tetrahedron 2005; 61: 7833
  • 3 Ranu BC. Bhar S. Org. Prep. Proced. Int. 1996; 28: 371
  • 4 Burwell RL. Jr. Chem. Rev. 1954; 54: 615
  • 5 Zhou P. Hou A. Wang Y. Chin. J. Org. Chem. 2018; 38: 156
  • 6 Raju GG. Raju GR. Trimurtulu G. Venkateswarlu S. Kiran B. Patent WO2009 093259, 2009
  • 7 Lange RG. J. Org. Chem. 1962; 27: 2037
  • 8 Lange RG. US Patent 3256336, 1966
  • 9 Yadav Y. Owens EA. Sharma V. Aneja R. Henary M. Eur. J. Med. Chem. 2014; 75: 1
  • 10 Shenoy NR. Choughuley AS. J. Agric. Food Chem. 1989; 37: 721
  • 11 Jeng JH. Wang YJ. Chang WH. Wu HL. Li CH. Uang BJ. Kang JJ. Lee JJ. Hahn LJ. Lin BR. Chang MC. Cell. Mol. Life Sci. 2004; 61: 83
  • 12 Arifin B. Tang DF. Achmadi SS. Indones. J. Chem. 2015; 15: 77
  • 13 Fache F. Suzan N. Piva O. Tetrahedron 2005; 61: 5261
  • 14 Kraft P. Eichenberger W. Eur. J. Org. Chem. 2003; 3735
  • 15 Zhao H. Brandt GE. Galam L. Matts RL. Blagg BS. Bioorg. Med. Chem. Lett. 2011; 21: 2659
  • 16 Coolen HK. Meeuwis JA. van Leeuwen PW. Nolte RJ. J. Am. Chem. Soc. 1995; 117: 11906
  • 17 Bhatt MV. El-Morey SS. Synthesis 1982; 1048
  • 18 Ozanne A. Pouységu L. Depernet D. Francois B. Quideau S. Org. Lett. 2003; 5: 2903
  • 19 Pouységu L. Sylla T. Garnier T. Rojas LB. Charris J. Deffieux D. Quideau S. Tetrahedron 2010; 66: 5908
  • 20 Strych S. Trauner D. Angew. Chem. Int. Ed. 2013; 52: 9509
  • 21 Bernini R. Mincione E. Barontini M. Crisante F. J. Agric. Food Chem. 2008; 56: 8897
  • 22 Andersson S. Synthesis 1985; 437
  • 23 Tian J. Sang D. ARKIVOC 2015; (vi): 446
  • 24 Deffieux D. Gossart P. Quideau S. Tetrahedron Lett. 2014; 55: 2455
  • 25 Sang D. Yao M. Tian J. Chen X. Li L. Zhan H. You L. Synlett 2017; 28: 138
  • 26 Sang D. Wang J. Zheng Y. He J. Yuan C. An Q. Tian J. Synthesis 2017; 49: 2721
  • 27 Tian J. Yi C. Fang H. Sang D. He Z. Wang J. Gan Y. An Q. Tetrahedron Lett. 2017; 58: 3522
  • 28 Tian J. Yi C. He Z. Yao M. Sang D. ChemistrySelect 2017; 2: 9211
  • 29 Konwar D. Boruah RC. Sandhu JS. Tetrahedron Lett. 1990; 31: 1063
  • 30 Sarmah P. Barua NC. Tetrahedron Lett. 1988; 29: 5815
  • 31 Babau JR. Bhatt MV. Tetrahedron Lett. 1986; 27: 1073
  • 32 Konwar D. Boruah RC. Sandhu JS. Synthesis 1990; 337
  • 33 Stauber JM. Cummins CC. Inorg. Chem. 2017; 56: 3022
  • 34 Tetsuo A. Takeshi A. Naomichi F. Shigeru O. Bull. Chem. Soc. Jpn. 1976; 49: 1441
  • 35 Ren H. Chen Z. Cao G. Zhang F. Li H. Xu J. Miao M. Synlett 2017; 28: 1795
  • 36 Bettanin L. Saba S. Galetto FZ. Mike GA. Rafique J. Braga AL. Tetrahedron Lett. 2017; 58: 4713
  • 37 Rafique J. Saba S. Rosario AR. Braga AL. Chem. Eur. J. 2016; 22: 11854
  • 38 Saba S. Rafique J. Braga AL. Catal. Sci. Technol. 2016; 6: 3087
  • 39 Shirshova LV. Lavrent’ev IP. Russ. J. Coord. Chem. 2001; 27: 511
  • 40 Ramanathan S. Sang D. Kumar V. Lemal DM. Synthesis of Tetrafluorocatechol . In Efficient Preparations of Fluorine Compounds . Roesky HW. Wiley; Hoboken: 2012: 252
  • 41 Klarmann E. Gates LW. Shternov VA. J. Am. Chem. Soc. 1932; 54: 1204
  • 42 Zuo L. Yao S. Wang W. Duan W. Tetrahedron Lett. 2008; 49: 4054
  • 43 Fields DL. Miller JB. Reynolds DD. J. Org. Chem. 1964; 29: 2640
  • 44 Kuwatsuka S. Casida JE. J. Agric. Food Chem. 1965; 13: 528
  • 45 Beekman AM. Barrow RA. J. Org. Chem. 2014; 79: 1017
  • 46 Hasse K. Willis AC. Banwell MG. Eur. J. Org. Chem. 2011; 88
  • 47 Fazary AE. Ju Y.-H. Al-Shihri AS. Bani-Fwaz MZ. Alfaifi MY. Alshehri MA. Saleh KA. Elbehairi SE. I. Fawy KF. Abd-Rabboh HS. M. Open Chem. 2017; 15: 189
  • 48 Sang D. Tian J. Ji G. J. Fluoresc. 2006; 16: 749