Synthesis 2019; 51(13): 2585-2631
DOI: 10.1055/s-0037-1611784
review
© Georg Thieme Verlag Stuttgart · New York

Rhodium-Catalyzed Allylation Reactions

Mahesh Bhagwan Thoke
a  Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. of China   eMail: [email protected]
b  University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
,
a  Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. of China   eMail: [email protected]
› Institutsangaben
This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB20000000) and the 100 Talents Program of the Chinese Academy of Sciences. Mahesh B. Thoke delightedly acknowledges the CAS-TWAS President’s Fellowship for Ph.D.
Weitere Informationen

Publikationsverlauf

Received: 08. März 2019

Accepted after revision: 08. März 2019

Publikationsdatum:
30. April 2019 (online)


Abstract

Rhodium-catalyzed allylation reactions are well known for their unique selectivity and reactivity due to the high memory effect of Rh as compared to other metals. These reactions involve the substitution of allylic rhodium intermediates with a diverse range of different nucleophiles, leading to C–C and C–heteroatom bond formation. Modern organic chemists are, however, interested in atom-economical protocols under greener pathways and following recent increased understanding of mechanistic aspects of Rh-catalyzed allylation via the hydrofunctionalization of allenes or alkynes, great strides have made in the design and development of new atom-economical protocols. In this article, we review this field from its beginning to current state.

1 Introduction

2 Rhodium-Catalyzed Allylic Substitution

3 Rhodium-Catalyzed Allylation with Allenes

4 Rhodium-Catalyzed Allylation with Alkynes

5 Rhodium-Catalyzed Allylation with Dienes

6 Rhodium-Catalyzed Allylation by ARO of Oxabicyclic Alkenes

7 Rhodium-Catalyzed Enantioselective Allylation in Natural Product and Drug Synthesis

8 Conclusion

 
  • References

    • 1a Hartwig JF, Stanley LM. Acc. Chem. Res. 2010; 43: 1461
    • 1b Helmchen G, Dahnz A, Dubon P, Schelwies M, Weihofen R. Chem. Commun. 2007; 675
    • 1c Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 1d Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2005; 44: 4435
    • 1e Belda O, Moberg C. Acc. Chem. Res. 2004; 37: 159
    • 2a Trost BM. Acc. Chem. Res. 1996; 29: 355
    • 2b Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 2c Trost BM, Machacek MR, Aponick A. Acc. Chem. Res. 2006; 39: 747
    • 3a Chen MS, White MC. J. Am. Chem. Soc. 2004; 126: 1346
    • 3b Liu G, Wu Y. Top. Curr. Chem. 2010; 292: 195
    • 3c Trost BM, Thaisrivongs DA, Donckele EJ. Angew. Chem. Int. Ed. 2013; 52: 1523
  • 4 Weaver JD, Recio A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
  • 5 Koschker P, Breit B. Acc. Chem. Res. 2016; 49: 1524
    • 6a Turnbull BW. H, Evans PA. J. Org. Chem. 2018; 83: 11463
    • 6b Evans PA, Leahy DK. Modern Rhodium-Catalyzed Organic Reactions . Evans PA. Wiley-VCH; Weinheim: 2005. Chap. 10, 191
    • 6c Grange RL, Clizbe EA, Evans PA. Synthesis 2016; 48: 2911
    • 6d Oliver S, Evans PA. Synthesis 2013; 45: 3179
    • 7a Tsuji J, Minami I, Shimizu I. Chem. Lett. 1984; 1721
    • 7b Hayashi Y, Komiya S, Yamamoto T, Yamamoto A. Chem. Lett. 1984; 977
    • 7c Tsuji J, Minami I, Shimizu I. Tetrahedron Lett. 1984; 25: 5157
    • 7d Minami I, Shimizu I, Tsuji J. J. Organomet. Chem. 1985; 296: 269
  • 8 Evans PA, Nelson JD. Tetrahedron Lett. 1998; 39: 1725
  • 9 Evans PA, Nelson JD. J. Am. Chem. Soc. 1998; 120: 5581
  • 10 Evans PA, Kennedy LJ. Org. Lett. 2000; 2: 2213
  • 11 Evans PA, Kennedy LJ. J. Am. Chem. Soc. 2001; 123: 1234
  • 12 Evans PA, Uraguchi D. J. Am. Chem. Soc. 2003; 125: 7158
  • 13 Evans PA, Robinson JE. J. Am. Chem. Soc. 2001; 123: 4609
  • 14 Hayashi T, Okada A, Suzuka T, Kawatsura M. Org. Lett. 2003; 5: 1713
  • 15 Evans PA, Leahy DK. J. Am. Chem. Soc. 2003; 125: 8974
  • 16 Evans PA, Lawler MJ. J. Am. Chem. Soc. 2004; 126: 8642
  • 17 Ashfeld BL, Miller KA, Martin SF. Org. Lett. 2004; 6: 1321
    • 18a Ashfeld BL, Miller KA, Smith AJ, Tran K, Martin SF. Org. Lett. 2005; 7: 1661
    • 18b Ashfeld BL, Miller KA, Smith AJ, Tran K, Martin SF. J. Org. Chem. 2007; 72: 9018
  • 19 Kazmaier U, Stolz D. Angew. Chem. Int. Ed. 2006; 45: 3072
  • 20 Schmidt B, Staude L. J. Org. Chem. 2011; 76: 2220
  • 21 Evans PA, Clizbe EA, Lawler MJ, Oliver S. Chem. Sci. 2012; 3: 1835
  • 22 Evans PA, Oliver S, Chae J. J. Am. Chem. Soc. 2012; 134: 19314
  • 23 Evans PA, Oliver S. Org. Lett. 2013; 15: 5626
  • 24 Turnbull BW. H, Oliver S, Evans PA. J. Am. Chem. Soc. 2015; 137: 15374
  • 25 Turnbull BW. H, Chae J, Oliver S, Evans PA. Chem. Sci. 2017; 8: 4001
  • 26 Turnbull BW. H, Evans PA. J. Am. Chem. Soc. 2015; 137: 6156
  • 27 Wright TB, Evans PA. J. Am. Chem. Soc. 2016; 138: 15303
  • 28 Li C, Breit B. Chem. Eur. J. 2016; 22: 14655
    • 29a Schafer P, Palacin T, Sidera M, Fletcher SP. Nat. Commun. 2017; 8: 15762
    • 29b Sidera M, Fletcher SP. Nat. Chem. 2015; 7: 935
  • 30 Tang SB, Zhang X, Tu HF, You SL. J. Am. Chem. Soc. 2018; 140: 7737
  • 31 Evans PA, Robinson JE, Nelson JD. J. Am. Chem. Soc. 1999; 121: 6761
  • 32 Evans PA, Robinson JE. Org. Lett. 1999; 1: 1929
  • 33 Evans PA, Robinson JE, Moffett KK. Org. Lett. 2001; 3: 3269
  • 34 Evans PA, Lai KW, Zhang H.-R, Huffman JC. Chem. Commun. 2006; 844
  • 35 Evans PA, Clizbe EA. J. Am. Chem. Soc. 2009; 131: 8722
    • 36a Vrieze DC, Hoge GS, Hoerter PZ, Van Haitsma JT, Samas BM. Org. Lett. 2009; 11: 3140
    • 36b Atallah T, Blankespoor RL, Homan P, Hulderman C, Samas BM, Van Allsburg K, Vrieze DC. Tetrahedron Lett. 2013; 54: 5795
  • 37 Arnold JS, Stone RF, Nguyen HM. Org. Lett. 2010; 12: 4580
  • 38 Arnold JS, Cizio GT, Nguyen HM. Org. Lett. 2011; 13: 5576
  • 39 Arnold JS, Nguyen HM. J. Am. Chem. Soc. 2012; 134: 8380
  • 40 Arnold JS, Cizio GT, Heitz DR, Nguyen HM. Chem. Commun. 2012; 48: 11531
  • 41 Arnold JS, Mwenda ET, Nguyen HM. Angew. Chem. Int. Ed. 2014; 53: 3688
  • 42 Liang L, Xie MS, Qin T, Zhu M, Qu GR, Guo HM. Org. Lett. 2017; 19: 5212
  • 43 Evans PA, Leahy DK. J. Am. Chem. Soc. 2000; 122: 5012
  • 44 Evans PA, Leahy DK. J. Am. Chem. Soc. 2002; 124: 7882
  • 45 Evans PA, Leahy DK, Slieker LM. Tetrahedron: Asymmetry 2003; 14: 3613
  • 46 Evans PA, Leahy DK, Andrews WJ, Uraguchi D. Angew. Chem. Int. Ed. 2004; 43: 4788 ; and references cited therein
  • 47 Li C, Breit B. J. Am. Chem. Soc. 2014; 136: 862
  • 48 Beck TM, Breit B. Angew. Chem. Int. Ed. 2017; 56: 1903
  • 49 Bora PP, Sun G.-J, Zheng W.-F, Kang Q. Chin. J. Chem. 2018; 36: 20
  • 50 Grugel CP, Breit B. Org. Lett. 2018; 20: 1066
  • 51 Cooke ML, Xu K, Breit B. Angew. Chem. Int. Ed. 2012; 51: 10876
  • 52 Xu K, Gilles T, Breit B. Nat. Commun. 2015; 6: 7616
  • 53 Xu K, Thieme N, Breit B. Angew. Chem. Int. Ed. 2014; 53: 2162
  • 54 Xu K, Thieme N, Breit B. Angew. Chem. Int. Ed. 2014; 53: 7268
  • 55 Berthold D, Breit B. Org. Lett. 2018; 20: 598
  • 56 Li C, Kaehny M, Breit B. Angew. Chem. Int. Ed. 2014; 53: 13780
  • 57 Xu K, Raimondi W, Bury T, Breit B. Chem. Commun. 2015; 51: 10861
  • 58 Haydl AM, Xu K, Breit B. Angew. Chem. Int. Ed. 2015; 54: 7149
  • 59 Xu K, Wang Y.-H, Khakyzadeh V, Breit B. Chem. Sci. 2016; 7: 3313
  • 60 Spreider PA, Haydl AM, Heinrich M, Breit B. Angew. Chem. Int. Ed. 2016; 55: 15569
  • 61 Thieme N, Breit B. Angew. Chem. Int. Ed. 2017; 56: 1520
  • 62 Parveen S, Li C, Hassan A, Breit B. Org. Lett. 2017; 19: 2326
  • 63 Zhou Y, Breit B. Chem. Eur. J. 2017; 23: 18156
  • 64 Koschker P, Lumbroso A, Breit B. J. Am. Chem. Soc. 2011; 133: 20746
  • 65 Haydl AM, Berthold D, Spreider PA, Breit B. Angew. Chem. Int. Ed. 2016; 55: 5765
  • 66 Liu Z, Breit B. Angew. Chem. Int. Ed. 2016; 55: 8440
  • 67 Ganss S, Breit B. Angew. Chem. Int. Ed. 2016; 55: 9738
  • 68 Liu Z, Breit B. Org. Lett. 2018; 20: 300
  • 69 Pritzius AB, Breit B. Angew. Chem. Int. Ed. 2015; 54: 3121
  • 70 Pritzius AB, Breit B. Angew. Chem. Int. Ed. 2015; 54: 15818
  • 71 Khakyzadeh V, Wang YH, Breit B. Chem. Commun. 2017; 53: 4966
  • 72 Chen Z, Dong VM. Nat. Commun. 2017; 8: 784
  • 73 Beck TM, Breit B. Org. Lett. 2016; 18: 124
  • 74 Cruz FA, Chen Z, Kurtoic SI, Dong VM. Chem. Commun. 2016; 52: 5836
    • 75a Li C, Grugel CP, Breit B. Chem. Commun. 2016; 52: 5840
    • 75b Beck TM, Breit B. Eur. J. Org. Chem. 2016; 2016: 5839
  • 76 Cruz FA, Dong VM. J. Am. Chem. Soc. 2017; 139: 1029
  • 77 Kuang J, Parveen S, Breit B. Angew. Chem. Int. Ed. 2017; 56: 8422
  • 78 Cruz FA, Zhu Y, Tercenio QD, Shen Z, Dong VM. J. Am. Chem. Soc. 2017; 139: 10641
  • 79 Zheng W.-F, Xu Q.-J, Kang Q. Organometallics 2017; 36: 2323
  • 80 Chen Q.-A, Chen Z, Dong VM. J. Am. Chem. Soc. 2015; 137: 8392
  • 81 Haydl AM, Hilpert LJ, Breit B. Chem. Eur. J. 2016; 22: 6547
  • 82 Lumbroso A, Koschker P, Vautravers NR, Breit B. J. Am. Chem. Soc. 2011; 133: 2386
  • 83 Stang EM, White MC. Angew. Chem. Int. Ed. 2011; 50: 2094
  • 84 Lumbroso A, Abermil N, Breit B. Chem. Sci. 2012; 3: 789
  • 85 Koschker P, Kaehny M, Breit B. J. Am. Chem. Soc. 2015; 137: 3131
  • 86 Xu K, Khakyzadeh V, Bury T, Breit B. J. Am. Chem. Soc. 2014; 136: 16124
  • 87 Yang X.-H, Dong VM. J. Am. Chem. Soc. 2017; 139: 1774
    • 88a Goldfogel MJ, Roberts CC, Meek SJ. J. Am. Chem. Soc. 2014; 136: 6227
    • 88b Roberts CC, Matias DM, Goldfogel MJ, Meek SJ. J. Am. Chem. Soc. 2015; 137: 6488
    • 88c Goldfogel MJ, Meek SJ. Chem. Sci. 2016; 7: 4079
    • 88d Marcum JS, Roberts CC, Manan RS, Cervarich TN, Meek SJ. J. Am. Chem. Soc. 2017; 139: 15580
  • 89 Fagnou K. Modern Rhodium-Catalyzed Organic Reactions . Evans PA. Wiley-VCH; Weinheim: 2005. Chap. 9, 170
    • 90a Lautens M, Fagnou K. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 5455
    • 90b Qi Z.-H, Zhang Y, Gao Y, Zhang Y, Wang X.-W, Wang Y. Sci. Rep. 2017; 7: 40491
  • 91 Lautens M, Dockendorff C, Fagnou K, Malicki A. Org. Lett. 2002; 4: 1311
  • 92 Tsui GC, Tsoung J, Dougan P, Lautens M. Org. Lett. 2012; 14: 5542
  • 93 Murakami M, Igawa H. Chem. Commun. 2002; 390
  • 94 Lautens M, Fagnou K, Yang D. J. Am. Chem. Soc. 2003; 125: 14884
  • 95 Allen A, Le Marquand P, Burton R, Villeneuve K, Tam W. J. Org. Chem. 2007; 72: 7849
  • 96 Zhang L, Le CM, Lautens M. Angew. Chem. Int. Ed. 2014; 53: 5951
  • 97 Loh CC. J, Fang X, Peters B, Lautens M. Chem. Eur. J. 2015; 21: 13883
  • 98 Loh CC. J, Schmid M, Peters B, Fang X, Lautens M. Angew. Chem. Int. Ed. 2016; 55: 4600
    • 99a Lautens M, Fagnou K, Taylor M, Rovis T. J. Organomet. Chem. 2001; 624: 259
    • 99b Braun W, Müller W, Calmuschi B, Salzer A. J. Organomet. Chem. 2005; 690: 1166
    • 99c Tsui GC, Dougan P, Lautens M. Org. Lett. 2013; 15: 2652
    • 99d Dockendorff C, Jin S, Olsen M, Lautens M, Coupal M, Hodzic L, Spear N, Payza K, Walpole C, Tomaszewski MJ. Bioorg. Med. Chem. 2009; 19: 1228
    • 99e Long Y, Zhao S, Zeng H, Yang D. Catal. Lett. 2010; 138: 124
    • 99f Boyer A, Lautens M. Angew. Chem. Int. Ed. 2011; 50: 7346
    • 99g Luo R, Xie L, Liao J, Xin H, Chan AS. C. Tetrahedron: Asymmetry 2014; 25: 709
    • 99h Xu X, Chen J, He Z, Zhou Y, Fan B. Org. Biomol. Chem. 2016; 14: 2480
  • 100 Lautens M, Fagnou K, Rovis T. J. Am. Chem. Soc. 2000; 122: 5650
  • 101 Lautens M, Fagnou K. J. Am. Chem. Soc. 2001; 123: 7170
  • 102 Tsui GC, Ninnemann NM, Hosotani A, Lautens M. Org. Lett. 2013; 15: 1064
  • 103 Lautens M, Fagnou K, Taylor M. Org. Lett. 2000; 2: 1677
  • 104 Lautens M, Fagnou K. Tetrahedron 2001; 57: 5067
  • 105 He X, Chen J, Xu X, Yang F, Gu C, Zhou Y, Fan B. Tetrahedron: Asymmetry 2017; 28: 62
  • 106 Tsui GC, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 5400
  • 107 Yen A, Choo KL, Yazdi SK, Franke PT, Webster R, Franzoni I, Loh CC. J, Poblador-Bahamonde AI, Lautens M. Angew. Chem. Int. Ed. 2017; 56: 6307
  • 108 Lautens M, Schmid GA, Chau A. J. Org. Chem. 2002; 67: 8043
  • 109 Webster R, Boeing C, Lautens M. J. Am. Chem. Soc. 2009; 131: 444
  • 110 Webster R, Boyer A, Fleming MJ, Lautens M. Org. Lett. 2010; 12: 5418
  • 111 Nguyen T.-D, Webster R, Lautens M. Org. Lett. 2011; 13: 1370
  • 112 Leong P, Lautens M. J. Org. Chem. 2004; 69: 2194
  • 113 Zhu J, Tsui GC, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 12353
    • 114a Cho Y.-H, Fayol A, Lautens M. Tetrahedron: Asymmetry 2006; 17: 416
    • 114b Xie L, Yang DQ, Zhao SQ, Wang H, Liang LH, Luo RS. Chin. Chem. Lett. 2007; 18: 127
    • 114c Lautens M, Cho Y.-H, Tseng N.-W, Senboku H. Synthesis 2008; 2467
    • 114d Wu Y, Yang D, Zeng H, Xie L, Wu L, Mo H, Zuo X. Chin. J. Chem. 2010; 28: 235
  • 115 Lautens M, Fagnou K, Zunic V. Org. Lett. 2002; 4: 3465
  • 116 Cho Y.-h, Zunic V, Senboku H, Olsen M, Lautens M. J. Am. Chem. Soc. 2006; 128: 6837
  • 117 Evans PA, Qin J, Robinson JE, Bazin B. Angew. Chem. Int. Ed. 2007; 46: 7417 ; and references contained therein
  • 118 Berthold D, Breit B. Chem. Eur. J. 2018; 24: 16770
  • 119 Schotes C, Ostrovskyi D, Senger J, Schmidtkunz K, Jung M, Breit B. Chem. Eur. J. 2014; 20: 2164 ; and references therein
  • 120 Haydl AM, Breit B. Angew. Chem. Int. Ed. 2015; 54: 15530