Synthesis 2019; 51(17): 3171-3204
DOI: 10.1055/s-0037-1611822
review
© Georg Thieme Verlag Stuttgart · New York

Transition Metal-Catalyzed Directed C(sp3)–H Functionalization of Saturated Heterocycles

Daniele Antermite
,
James A. Bull
We gratefully acknowledge The Royal Society for University Research Fellowship (UF140161 to J.A.B.), URF appointed grant (RG150444) and URF enhancement grant (RGF\EA\180031).
Weitere Informationen

Publikationsverlauf

Received: 08. März 2019

Accepted after revision: 03. April 2019

Publikationsdatum:
17. Juni 2019 (online)


Abstract

Synthetic methods that can readily access saturated heterocycles with different substitution patterns and with control of stereo- and regiochemistry are of huge potential value in the development of new medicinal compounds. Directed C–H functionalization of simple and commercially available precursors offers the potential to prepare diverse collections of such valuable compounds that can probe the different available exit vectors from a ring system. Nonetheless, the presence of the Lewis basic heteroatoms makes this a significant challenge. This review covers recent advances in the catalytic C–H functionalization of saturated heterocycles, with a view to different heterocycles (N, O, S), substitution patterns and transformations.

1 Introduction

2 α-C–H Functionalization with Directing Group on Nitrogen

3 C–H Functionalization at Unactivated C(3), C(4), and C(5) Positions

3.1 C–H Functionalization at C(3) with Directing Groups at C(2)

3.2 C–H Functionalization at C(3), C(4), and C(5): Directing Groups at C(4) and C(3)

4 Transannular C–H Functionalization

5 Conclusion

 
  • References

    • 1a Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 1b Aldeghi M, Malhotra S, Selwood DL, Chan AW. E. Chem. Biol. Drug Des. 2014; 83: 450
    • 1c Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 2a O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
    • 2b Saleem M, Kim HJ, Ali MS, Lee YS. Nat. Prod. Rep. 2005; 22: 696
    • 2c Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 2d Lorente A, Lamariano-Merketegi J, Albericio F, Álvarez M. Chem. Rev. 2013; 113: 4567
  • 3 Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
    • 4a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 4b Lovering F. Med. Chem. Commun. 2013; 4: 515
    • 4c Nadin A, Hattotuwagama C, Churcher I. Angew. Chem. Int. Ed. 2012; 51: 1114
    • 4d Murray CW, Rees DC. Angew. Chem. Int. Ed. 2016; 55: 488
    • 5a Godula K, Sames D. Science 2006; 312: 67
    • 5b Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 5c McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 5d Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 5e Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 5f Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14700
    • 6a Boutadla Y, Davies DL, Macgregor SA, Poblador-Bahamonde AI. Dalton Trans. 2009; 5820
    • 6b Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
    • 6c Ackermann L. Chem. Rev. 2011; 111: 1315
    • 6d Davies DL, Macgregor SA, McMullin CL. Chem. Rev. 2017; 117: 8649

      For recent selected examples of late-stage C–H functionalization see:
    • 7a Larsen MA, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4287
    • 7b Wang W, Lorion MM, Martinazzoli O, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 10554
    • 7c Simonetti M, Cannas DM, Just-Baringo X, Vitorica-Yrezabal IJ, Larrosa I. Nat. Chem. 2018; 10: 724
    • 8a Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 8b Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 8c Ping L, Chung DS, Bouffard J, Lee S. Chem. Soc. Rev. 2017; 46: 4299
    • 8d Mihai MT, Genov GR, Phipps RJ. Chem. Soc. Rev. 2018; 47: 149
    • 9a Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
    • 9b Dastbaravardeh N, Christakakou M, Haider M, Schnürch M. Synthesis 2014; 46: 1421
    • 9c Bruneau C. In Ruthenium in Catalysis . Dixneuf PH, Bruneau C. Springer; Cham: 2014: 195
    • 9d He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 9e Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 10a Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 10b Zhang M, Zhang Y, Jie X, Zhao H, Li G, Su W. Org. Chem. Front. 2014; 1: 843
    • 10c Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org. Chem. Front. 2015; 2: 1107
    • 10d Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 10e Xu Y, Dong G. Chem. Sci. 2018; 9: 1424
    • 10f Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BU. W, Schnürch M. Chem. Soc. Rev. 2018; 47: 6603
    • 11a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 11b Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
    • 12a Giri R, Maugel N, Li J.-J, Wang D.-H, Breazzano SP, Saunders LB, Yu J.-Q. J. Am. Chem. Soc. 2007; 129: 3510
    • 12b Shi B.-F, Maugel N, Zhang Y.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 4882

      For selected examples see:
    • 13a Feng Y, Chen G. Angew. Chem. Int. Ed. 2010; 49: 958
    • 13b Gutekunst WR, Gianatassio R, Baran PS. Angew. Chem. Int. Ed. 2012; 51: 7507
    • 13c Roman DS, Charette AB. Org. Lett. 2013; 15: 4394
    • 13d Yan S.-B, Zhang S, Duan W.-L. Org. Lett. 2015; 17: 2458
    • 13e Chapman LM, Beck JC, Wu L, Reisman SE. J. Am. Chem. Soc. 2016; 138: 9803
    • 13f Zhang X, Lu G, Sun M, Mahankali M, Ma Y, Zhang M, Hua W, Hu Y, Wang Q, Chen J, He G, Qi X, Shen W, Liu P, Chen G. Nat. Chem. 2018; 10: 540

      For reviews see:
    • 14a Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 14b Yang Y.-F, Hong X, Yu J.-Q, Houk KN. Acc. Chem. Res. 2017; 50: 2853

    • For selected recent examples see:
    • 14c Chu L, Xiao K.-J, Yu J.-Q. Science 2014; 346: 451
    • 14d Chan KS. L, Fu H.-Y, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 2042
    • 14e Chen G, Gong W, Zhuang Z, Andrä MS, Chen Y.-Q, Hong X, Yang Y.-F, Liu T, Houk KN, Yu J.-Q. Science 2016; 353: 1023
    • 14f Wu Q.-F, Shen P.-X, He J, Wang X.-B, Zhang F, Shao Q, Zhu R.-Y, Mapelli C, Qiao JX, Poss MA, Yu J.-Q. Science 2017; 355: 499
    • 14g He J, Shao Q, Wu Q, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 3344
    • 14h Shen P.-X, Hu L, Shao Q, Hong K, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 6545

      For selected examples see:
    • 15a Chen F.-J, Zhao S, Hu F, Chen K, Zhang Q, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 4187
    • 15b He G, Zhang S.-Y, Nack WA, Li Q, Chen G. Angew. Chem. Int. Ed. 2013; 52: 11124
    • 15c Rodríguez N, Romero-Revilla JA, Fernández-Ibáñez M. Á, Carretero JC. Chem. Sci. 2013; 4: 175
    • 15d Fan M, Ma D. Angew. Chem. Int. Ed. 2013; 52: 12152
    • 15e Xu Y, Yan G, Ren Z, Dong G. Nat. Chem. 2015; 7: 829
    • 15f Zhang Y.-F, Zhao H.-W, Wang H, Wei J.-B, Shi Z.-J. Angew. Chem. Int. Ed. 2015; 54: 13686
    • 15g Knight BJ, Rothbaum JO, Ferreira EM. Chem. Sci. 2016; 7: 1982

      For a recent review, see:
    • 16a St John-Campbell S, Bull JA. Org. Biomol. Chem. 2018; 16: 4582

    • For selected examples see:
    • 16b Zhang F.-L, Hong K, Li T.-J, Park H, Yu J.-Q. Science 2016; 351: 252
    • 16c Yang K, Li Q, Liu Y, Li G, Ge H. J. Am. Chem. Soc. 2016; 138: 12775
    • 16d Wu Y, Chen Y.-Q, Liu T, Eastgate MD, Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14554
    • 16e St John-Campbell S, White AJ. P, Bull JA. Chem. Sci. 2017; 8: 4840
    • 16f Liu Y, Ge H. Nat. Chem. 2017; 9: 26
    • 16g St John-Campbell S, Ou AK, Bull JA. Chem. Eur. J. 2018; 24: 17838
    • 16h Kapoor M, Liu D, Young MC. J. Am. Chem. Soc. 2018; 140: 6818
    • 17a Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 17b Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704

    • For recent selected examples, see:
    • 17c He J, Hamann LG, Davies HL. M, Beckwith RE. J. Nat. Commun. 2015; 6: 5943
    • 17d Bedell TA, Hone GA. B, Valette D, Yu J.-Q, Davies HM. L, Sorensen EJ. Angew. Chem. Int. Ed. 2016; 55: 8270
    • 18a Rueping M, Vila C, Koenigs RM, Poscharny K, Fabry DC. Chem. Commun. 2011; 47: 2360
    • 18b Hari DP, König B. Org. Lett. 2011; 13: 3852
    • 18c Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474

      For hydrogen atom transfer strategies, see:
    • 20a Yoshikai N, Mieczkowski A, Matsumoto A, Ilies L, Nakamura E. J. Am. Chem. Soc. 2010; 132: 5568
    • 20b Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2017: 2056
  • 21 For Ni-catalyzed C–H functionalization of tetrahydrofuran by radical abstraction, see: Liu D, Liu C, Li H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 4453

    • For photoredox-mediated approaches, see:
    • 22a McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
    • 22b Noble A, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
    • 22c Prier CK, MacMillan DW. C. Chem. Sci. 2014; 5: 4173
    • 22d Joe CL, Doyle AG. Angew. Chem. Int. Ed. 2016; 55: 4040
    • 22e Ahneman DT, Doyle AG. Chem. Sci. 2016; 7: 7002
    • 22f Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
    • 22g Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
    • 22h Grainger R, Heightman TD, Ley SL, Lima F, Johnson CN. Chem. Sci. 2019; 10: 2264
  • 23 For Fe-catalyzed C–H oxidation of pyrrolidine ring, see: Osberger TJ, Rogness DC, Kohrt JT, Stepan AF, White MC. Nature 2016; 537: 214

    • For selected examples proceeding by hydride transfer, see:
    • 24a Jurberg ID, Peng B, Wöstefeld E, Wasserloos M, Maulide N. Angew. Chem. Int. Ed. 2012; 51: 1950
    • 24b Murugesh V, Bruneau C, Achard M, Sahoo AR, Sharma GV. M, Suresh S. Chem. Commun. 2017; 53: 10448
    • 24c Chen W, Ma L, Paul A, Seidel D. Nat. Chem. 2018; 10: 165
    • 25a Sundararaju B, Achard M, Sharma GV. M, Bruneau C. J. Am. Chem. Soc. 2011; 133: 10340
    • 25b Millet A, Larini P, Clot E, Baudoin O. Chem. Sci. 2013; 4: 2241
    • 25c Jiang F, Achard M, Bruneau C. Chem. Eur. J. 2015; 21: 14319
    • 25d Lee M, Sanford MS. Org. Lett. 2017; 19: 572
    • 25e Chen M, Liu F, Dong G. Angew. Chem. Int. Ed. 2018; 57: 3815

      For selected reviews, see:
    • 26a Doye S. Angew. Chem. Int. Ed. 2001; 40: 3351
    • 26b Campos KR. Chem. Soc. Rev. 2007; 36: 1069
    • 26c Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BU. W. Chem. Eur. J. 2012; 18: 10092
    • 26d Vo C.-VT, Bode JW. J. Org. Chem. 2014; 79: 2809
    • 26e Seidel D. Acc. Chem. Res. 2015; 48: 317
    • 26f Antermite D, Degennaro L, Luisi R. Org. Biomol. Chem. 2017; 15: 34
    • 26g Liu G.-Q, Opatz T. Adv. Heterocycl. Chem. 2018; 125: 107
    • 26h Gonnard L, Guérinot A, Cossy J. Tetrahedron 2019; 75: 145

      For selected examples see:
    • 27a Beak P, Kerrick ST, Wu S, Chu J. J. Am. Chem. Soc. 1994; 116: 3231
    • 27b Campos KR, Klapars A, Waldman JH, Dormer PG, Chen C. J. Am. Chem. Soc. 2006; 128: 3538
    • 27c Stead D, Carbone G, O’Brien P, Campos KR, Coldham I, Sanderson A. J. Am. Chem. Soc. 2010; 132: 7260
    • 27d Beng TK, Gawley RE. J. Am. Chem. Soc. 2010; 132: 12216
    • 27e Hodgson DM, Kloesges J. Angew. Chem. Int. Ed. 2010; 49: 2900
    • 27f Seel S, Thaler T, Takatsu K, Zhang C, Zipse H, Straub BF, Mayer P, Knochel P. J. Am. Chem. Soc. 2011; 133: 4774
    • 27g Cordier CJ, Lundgren RJ, Fu GC. J. Am. Chem. Soc. 2013; 135: 10946
    • 27h Firth JD, O’Brien P, Ferris L. J. Am. Chem. Soc. 2016; 138: 651
  • 28 Ishii Y, Chatani N, Kakiuchi F, Murai S. Organometallics 1997; 16: 3615
  • 29 Ishii Y, Chatani N, Kakiuchi F, Murai S. Tetrahedron Lett. 1997; 38: 7565
  • 30 Chatani N, Asaumi T, Ikeda T, Yorimistu S, Ishii Y, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2000; 122: 12882
  • 31 Pastine SJ, Gribkov DV, Sames D. J. Am. Chem. Soc. 2006; 128: 14220
    • 32a Prokopcová H, Bergman SD, Aelvoet K, Smout V, Herrebout W, Van der Veken B, Meerpoel L, Maes BU. W. Chem. Eur. J. 2010; 16: 13063
    • 32b Peschiulli A, Smout V, Storr TE, Mitchell EA, Eliáš Z, Herrebout W, Berthelot D, Meerpoel L, Maes BU. W. Chem. Eur. J. 2013; 19: 10378
  • 33 Gribkov DV, Pastine SJ, Schnürch M, Sames D. J. Am. Chem. Soc. 2007; 129: 11750
  • 34 For a systematic study and alternative conditions for pyridine removal, see: Smout V, Peschiulli A, Verbeeck S, Mitchell EA, Herrebout W, Bultinck P, Vande Velde CM. L, Berthelot D, Meerpoel L, Maes BU. W. J. Org. Chem. 2013; 78: 9803
  • 35 Schwarz MC, Dastbaravardeh N, Kirchner K, Schnürch M, Mihovilovic MD. Monatsh. Chem. 2013; 144: 539
  • 36 Spangler JE, Kobayashi Y, Verma P, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 11876
  • 37 For a review of PdII/Pd0 C–H functionalization, see: Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
  • 38 Jain P, Verma P, Xia G, Yu J.-Q. Nat. Chem. 2017; 9: 140
  • 39 For a review on BINOL-derived phosphate ligands in asymmetric catalysis, see: Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
  • 40 For a single example of complementary C–H arylation of tetrahydroisoquinoline at the benzylic position, see: Dastbaravardeh N, Kirchner K, Schnürch M, Mihovilovic MD. J. Org. Chem. 2013; 78: 658
  • 41 Jiang H.-J, Zhong X.-M, Yu J, Zhang Y, Zhang X, Wu Y.-D, Gong L.-Z. Angew. Chem. Int. Ed. 2019; 58: 1803
  • 42 Greßies S, Klauck FJ. R, Kim JH, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2018; 57: 9950
  • 43 For a recent review on TADDOL-based P ligands in C–H activation reaction, see: Pedroni J, Cramer N. Chem. Commun. 2015; 51: 17647
  • 44 Chatani N, Asaumi T, Yorimistu S, Ikeda T, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2001; 123: 10935
  • 45 Bergman SD, Storr TE, Prokopková H, Aelvoet K, Diels G, Meerpoel L, Maes BU. W. Chem. Eur. J. 2012; 18: 10393
  • 46 MacConnell JG, Blum MS, Fales HM. Science 1970; 168: 840
  • 47 Kulago AA, Van Steijvoort BF, Mitchell EA, Meerpoel L, Maes BU. W. Adv. Synth. Catal. 2014; 356: 1610
  • 48 Schinkel M, Wang L, Bielefeld K, Ackermann L. Org. Lett. 2014; 16: 1876
  • 49 Yi CS, Yun SY. Organometallics 2004; 23: 5392
  • 50 Herzon SB, Hartwig JF. J. Am. Chem. Soc. 2007; 129: 6690
  • 51 Eisenberger P, Ayinla RO, Lauzon JM. P, Schafer LL. Angew. Chem. Int. Ed. 2009; 48: 8361
  • 52 Chong E, Brandt JW, Schafer LL. J. Am. Chem. Soc. 2014; 136: 10898
  • 53 Payne PR, Garcia P, Eisenberger P, Yim JC.-H, Schafer LL. Org. Lett. 2013; 15: 2182
  • 54 DeBoef B, Pastine SJ, Sames D. J. Am. Chem. Soc. 2004; 126: 6556
  • 55 For a related Co-catalyzed transfer hydrogenation of various N-[(vinyl)silyl]heterocycles, see: Bolig AD, Brookhart M. J. Am. Chem. Soc. 2007; 129: 14544
  • 56 Lahm G, Opatz T. Org. Lett. 2014; 16: 4201
  • 57 Tahara Y, Michino M, Ito M, Kanyiva KS, Shibata T. Chem. Commun. 2015; 51: 16660
  • 58 Tran AT, Yu J.-Q. Angew. Chem. Int. Ed. 2017; 56: 10530
  • 59 Affron DP, Davis OA, Bull JA. Org. Lett. 2014; 16: 4956
  • 60 Nack WA, Wang B, Wu X, Jiao R, He G, Chen G. Org. Chem. Front. 2016; 3: 561
  • 61 Affron DP, Bull JA. Eur. J. Org. Chem. 2016; 2016: 139
  • 62 Feng R, Wang B, Liu Y, Liu Z, Zhang Y. Eur. J. Org. Chem. 2015; 2015: 142

    • For the synthesis of a Pd(IV) complex as competent precatalyst see:
    • 63a Vicente J., Arcas A., Juliá-Hernández F., Bautista D.; Angew. Chem. Int. Ed. 2011, 50, 6896.

    • For a DFT study on the mechanism of a related Pd-catalyzed, AQ-assisted C(sp3)–H arylation with aryl bromides, see:
    • 63b Wei Y, Tang H, Cong X, Rao B, Wu C, Zeng X. Org. Lett. 2014; 16: 2248
  • 64 Yang X, Sun T.-Y, Rao Y. Chem. Eur. J. 2016; 22: 3273
  • 65 Berger M, Chauhan R, Rodrigues CA. B, Maulide N. Chem. Eur. J. 2016; 22: 16805
    • 66a Yu Q.-Y, Zhong H.-M, Sun W.-W, Zhang S.-J, Cao P, Dong X.-P, Qin H.-B, Liu J.-K, Wu B. Asian J. Org. Chem. 2016; 5: 608
    • 66b Zhang S.-J, Sun W.-W, Yu Q.-Y, Cao P, Dong X.-P, Wu B. Tetrahedron Lett. 2017; 58: 606
  • 67 Hacksell U, Arvidsson LE, Svensson U, Nilsson JL. G, Sanchez D, Wikstroem H, Lindberg P, Hjorth S, Carlsson A. J. Med. Chem. 1981; 24: 1475
  • 68 Mondal B, Roy B, Kazmaier U. J. Org. Chem. 2016; 81: 11646
  • 69 Ye S, Yang W, Coon T, Fanning D, Neubert T, Stamos D, Yu J.-Q. Chem. Eur. J. 2016; 22: 4748
  • 70 Maetani M, Zoller J, Melillo B, Verho O, Kato N, Pu J, Comer E, Schreiber SL. J. Am. Chem. Soc. 2017; 139: 11300
  • 71 Kato N, Comer E, Sakata-Kato T, Sharma A, Sharma M, Maetani M, Bastien J, Brancucci NM, Bittker JA, Corey V, Clarke D, Derbyshire ER, Dornan GL, Duffy S, Eckley S, Itoe MA, Koolen KM. J, Lewis TA, Lui PS, Lukens AK, Lund E, March S, Meibalan E, Meier BC, McPhail JA, Mitasev B, Moss EL, Sayes M, Van Gessel Y, Wawer MJ, Yoshinaga T, Zeeman A.-M, Avery VM, Bhatia SN, Burke JE, Catteruccia F, Clardy JC, Clemons PA, Dechering KJ, Duvall JR, Foley MA, Gusovsky F, Kocken CH. M, Marti M, Morningstar ML, Munoz B, Neafsey DE, Sharma A, Winzeler EA, Wirth DF, Scherer CA, Schreiber SL. Nature 2016; 538: 344
  • 72 Verho O, Maetani M, Melillo B, Zoller J, Schreiber SL. Org. Lett. 2017; 19: 4424
  • 73 Parella R, Babu SA. J. Org. Chem. 2015; 80: 2339
  • 74 Probst NP, Grelier G, Dahaoui S, Alami M, Gandon V, Messaoudi S. ACS Catal. 2018; 8: 7781
  • 75 Zhang S.-Y, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2013; 135: 12135
  • 76 Yang Q, Yang S.-D. ACS Catal. 2017; 7: 5220
  • 77 Zhu Q, Ji D, Liang T, Wang X, Xu Y. Org. Lett. 2015; 17: 3798
  • 78 Miao J, Yang K, Kurek M, Ge H. Org. Lett. 2015; 17: 3738
    • 79a Sun W.-W, Cao P, Mei R.-Q, Li Y, Ma Y.-L, Wu B. Org. Lett. 2014; 16: 480
    • 79b Zhang S.-J, Sun W.-W, Cao P, Dong X.-P, Liu J.-K, Wu B. J. Org. Chem. 2016; 81: 956
  • 80 Heinze-Krauss I, Angehrn P, Charnas RL, Gubernator K, Gutknecht E.-M, Hubschwerlen C, Kania M, Oefner C, Page MG. P, Sogabe S, Specklin J.-L, Winkler F. J. Med. Chem. 1998; 41: 3961
  • 81 Wasa M, Chan KS. L, Zhang X.-G, He J, Miura M, Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 18570
  • 82 He J, Wasa M, Chan KS. L, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 3387
  • 83 Antermite D, Affron DP, Bull JA. Org. Lett. 2018; 20: 3948
  • 84 Bourin M, Chue P, Guillon Y. CNS Drug Rev. 2001; 7: 25
  • 85 Van Steijvoort BF, Kaval N, Kulago AA, Maes BU. W. ACS Catal. 2016; 6: 4486
  • 86 He G, Chen G. Angew. Chem. Int. Ed. 2011; 50: 5192
  • 87 Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D’Alessandro U. Malar. J. 2011; 10: 144
  • 88 O’Donovan DH, Aillard P, Berger M, de la Torre A, Petkova D, Knittl-Frank C, Geerdink D, Kaiser M, Maulide N. Angew. Chem. Int. Ed. 2018; 57: 10737
    • 89a Willcox D, Chappell BG. N, Hogg KF, Calleja J, Smalley AP, Gaunt MJ. Science 2016; 354: 851
    • 89b Hogg KF, Trowbridge A, Alvarez-Pérez A, Gaunt MJ. Chem. Sci. 2017; 8: 8198
    • 89c Cabrera-Pardo JR, Trowbridge A, Nappi M, Ozaki K, Gaunt MJ. Angew. Chem. Int. Ed. 2017; 56: 11958
  • 90 Topczewski JJ, Cabrera PJ, Saper NI, Sanford MS. Nature 2016; 531: 220
  • 91 Beer B, Stark J, Krieter P, Czobor P, Beer G, Lippa A, Skolnick P. J. Clin. Pharmacol. 2004; 44: 1360
  • 92 Coe JW, Brooks PR, Vetelino MG, Wirtz MC, Arnold EP, Huang J, Sands SB, Davis TI, Lebel LA, Fox CB, Shrikhande A, Heym JH, Schaeffer E, Rollema H, Lu Y, Mansbach RS, Chambers LK, Rovetti CC, Schulz DW, Tingley FD, O’Neill BT. J. Med. Chem. 2005; 48: 3474
  • 93 Walker N, Howe C, Glover M, McRobbie H, Barnes J, Nosa V, Parag V, Bassett B, Bullen C. N. Engl. J. Med. 2014; 371: 2353
  • 94 Dewyer AL, Zimmerman PM. ACS Catal. 2017; 7: 5466
  • 95 Aguilera EY, Sanford MS. Organometallics 2019; 38: 138
  • 96 Cabrera PJ, Lee M, Sanford MS. J. Am. Chem. Soc. 2018; 140: 5599