Synthesis 2019; 51(10): 2171-2182
DOI: 10.1055/s-0037-1612216
paper
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed N-Arylation of Sulfoximines with Arylboronic Acids under Mild Conditions

Surabhi Gupta
a   Department of Chemistry, Indian Institute of Technology (BHU), 221005 Varanasi, Uttar Pradesh, India   eMail: jeyakumar.chy@iitbhu.ac.in
,
Siddharth Baranwal
a   Department of Chemistry, Indian Institute of Technology (BHU), 221005 Varanasi, Uttar Pradesh, India   eMail: jeyakumar.chy@iitbhu.ac.in
,
Nalluchamy Muniyappan
b   Department of Chemistry, Pondicherry University, 605014 Pondicherry, India
,
Shahulhameed Sabiah
b   Department of Chemistry, Pondicherry University, 605014 Pondicherry, India
,
a   Department of Chemistry, Indian Institute of Technology (BHU), 221005 Varanasi, Uttar Pradesh, India   eMail: jeyakumar.chy@iitbhu.ac.in
› Institutsangaben
J.K. gratefully acknowledges DST-India (DST/INT/MPG/P-09/2016) and Max-Planck Society, Germany for financial support through Indo-Max Planck partner group project. S.G. and S.B. acknowledge IIT (BHU) for a research fellowship.
Weitere Informationen

Publikationsverlauf

Received: 07. Dezember 2018

Accepted after revision: 16. Januar 2019

Publikationsdatum:
19. Februar 2019 (online)


Abstract

N-Arylation of sulfoximines with different arylboronic acids, including sterically hindered boronic acids, is achieved using copper(I) iodide and 4-DMAP at room temperature. Moreover, N-arylation of biologically relevant l-methionine sulfoximine is demonstrated for the first time. All these reactions provided the desired products in excellent yields within a short span of time. The optimized reaction conditions are well suited to the task of N-vinylation of sulfoximine with trans-2-phenylvinylboronic acid.

Supporting Information

 
  • References

    • 2a Bolm C. Sulfoximines as Ligands in Asymmetric Metal Catalysis. In Asymmetric Synthesis with Chemical and Biological Methods. Enders D, Jaeger K.-E. Wiley-VCH; Weinheim: 2007
    • 2b Remy P, Langner M, Bolm C. Org. Lett. 2006; 8: 1209
    • 2c Langner M, Bolm C. Angew. Chem. Int. Ed. 2004; 43: 5984
    • 2d Sedelmeier J, Hammerer T, Bolm C. Org. Lett. 2008; 10: 917
    • 2e Frings M, Thome I, Bolm C. Beilstein J. Org. Chem. 2012; 8: 1443
  • 3 Vessally E, Mohammadi R, Hosseinian A, Didehban K, Edjlali L. J. Sulfur Chem. 2018; 39: 674
    • 4a Sedelmeier J, Bolm C. J. Org. Chem. 2005; 70: 6904
    • 4b Bolm C, Hildebrand JP. J. Org. Chem. 2000; 65: 169
    • 4c Cho GY, Remy P, Jansson J, Moessner C, Bolm C. Org. Lett. 2004; 6: 3293
    • 4d Correa A, Bolm C. Adv. Synth. Catal. 2008; 350: 391
    • 4e Yongpruksa N, Calkins NL, Harmata M. Chem. Commun. 2011; 47: 7665
    • 4f Harmata M, Hong X, Ghosh SK. Tetrahedron Lett. 2004; 45: 5233
  • 5 Moessner C, Bolm C. Org. Lett. 2005; 7: 2667
  • 7 Kim J, Ok J, Kim S, Choi W, Lee PH. Org. Lett. 2014; 16: 4602
  • 8 Aithagani SK, Dara S, Munagala G, Aruri H, Yadav M, Sharma S, Vishwakarma RA, Singh PP. Org. Lett. 2015; 17: 5547
  • 9 Vaddula B, Leazer J, Varma RS. Adv. Synth. Catal. 2012; 354: 986
    • 10a Wang L, Priebbenow DL, Dong W, Bolm C. Org. Lett. 2014; 16: 2661
    • 10b Lämmermann H, Sudau A, Rackl D, Weinmann H, Collins K, Wortmann L, Candish L, Hog D, Meier R. Synlett 2018; 29: 2679
    • 11a Chan DM. T, Monaco KL, Wang RP, Winters MP. Tetrahedron Lett. 1998; 39: 2933
    • 11b Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron Lett. 1998; 39: 2941
  • 12 Hendriks CM. M, Bohmann RA, Bohlem M, Bolm C. Adv. Synth. Catal. 2014; 356: 1847
  • 13 Gupta S, Chaudhary P, Muniyappan N, Sabiah S, Kandasamy J. Org. Biomol. Chem. 2017; 15: 8493
    • 14a Bedford RB, Hazelwood SL, Limmert ME, Brown JM, Ramdeehul S, Cowley AR, Coles SJ, Hursthouse MB. Organometallics 2003; 22: 1364
    • 14b Surry DS, Buchwald SL. Chem. Sci. 2010; 1: 13
    • 14c Bhunia S, Pawar GG, Kumar SV, Jiang YW, Ma DW. Angew. Chem. Int. Ed. 2017; 56: 16136
    • 14d Hamann BC, Hartwig JF. J. Am. Chem. Soc. 1998; 120: 7369
    • 14e Roy S, Sarma MJ, Kashyap B, Phukan P. Chem. Commun. 2016; 52: 1170
    • 14f Vantourout JC, Law RP, Isidro-Llobet A, Atkinson SJ, Watson AJ. B. J. Org. Chem. 2016; 81: 3942
    • 15a Raghuvanshi K, Zell D, Ackermann L. Org. Lett. 2017; 19: 1278
    • 15b Kumar KA, Kannaboina P, Rao DN, Das P. Org. Biomol. Chem. 2016; 14: 8989
    • 16a Brusilow WS. A, Peters TJ. Expert Opin. Ther. Targets 2017; 21: 461
    • 16b Buglioni L, Bizet V, Bolm C. Adv. Synth. Catal. 2014; 356: 2209
    • 16c Griffith OW. J. Biol. Chem. 1982; 257: 13704
    • 17a Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 239
    • 17b Hetzer RH, Gais HJ, Raabe G. Synthesis 2008; 1126
    • 17c Ikeda M, Tsubouchi H, Tsunekawa M, Kondo H, Tamura Y. Chem. Pharm. Bull. 1984; 32: 3028
    • 18a Zenzola M, Doran R, Degennaro L, Luisi R, Bull JA. Angew. Chem. Int. Ed. 2016; 55: 7203
    • 18b Lohier J.-F, Glachet T, Marzag H, Gaumont A.-C, Reboul V. Chem. Commun. 2017; 53: 2064
    • 18c Tota A, Zenzola M, Chawner SJ, St John-Campbell S, Carlucci C, Romanazzi G, Degennaro L, Bull JA, Luisi R. Chem. Commun. 2017; 53: 348