Thromb Haemost 1998; 79(01): 155-161
DOI: 10.1055/s-0037-1614236
Review Article
Schattauer GmbH

Fibrillin Containing Elastic Microfibrils Support Platelet Adhesion under Dynamic Shear Conditions

Julia M. Ross*
1   From the Cox Laboratory for Biomedical Engineering, Rice University, Houston, TX, USA
,
Larry V. McIntire
1   From the Cox Laboratory for Biomedical Engineering, Rice University, Houston, TX, USA
,
Joel L. Moake
1   From the Cox Laboratory for Biomedical Engineering, Rice University, Houston, TX, USA
2   From the Division of Hematology, Baylor College of Medicine, Houston, TX, USA
,
Huey-Ju Kuo
3   From the Shriners Hospital for Crippled Children, Portland, OR, USA
,
Rui-Qing Qian
3   From the Shriners Hospital for Crippled Children, Portland, OR, USA
,
Robert W. Glanville
3   From the Shriners Hospital for Crippled Children, Portland, OR, USA
,
Elaine Schwartz
4   From the Department of Dermatology, Mt. Sinai School of Medicine, New York, NY, USA
,
Jacob H. Rand
5   From the Hematology Division, Mt. Sinai School of Medicine, New York, NY, USA
› Author Affiliations
This work was supported by NIH grants HL-18672, HL-32200, NS-23327, Robert A. Welch Foundation grant C-938, and grants from the Butcher Fund and Shriners Hospital for Crippled Children.
Further Information

Publication History

Received 26 September 1996

Accepted after resubmission 13 August 1997

Publication Date:
08 December 2017 (online)

Summary

The vascular subendothelium contains macromolecular structures called microfibrils. Type VI collagen is one protein found in microfibrils that supports platelet adhesion and aggregation and we have previously evaluated the roles of platelet receptors and vWf involved in these processes under physiological shear conditions. Here we investigate the ability of fibrillin containing elastic microfibrils to support mural thrombus formation. Our results show that elastic microfibril surfaces support platelet adhesion under low shear conditions at a level similar to collagen VI tetramers. However, the degree of aggregation on the elastic microfibril surface is much higher. Both adhesion and aggregation were shown to be mediated by the GPIIb-IIIa platelet receptor. Elastic microfibrils do not support the formation of mural thrombi under high shear conditions. These results suggest roles for both collagen VI and fibrillin containing elastic microfibrils in modulating the platelet response to blood vessel injury.

* Current address: Dr. Julia M. Ross, Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA


 
  • References

  • 1 Stemerman MB. Vascular intimal components: precursors of thrombosis. In: Progress in hemostasis and thrombosis. Spaet TH. ed. 1974. pp 1-47.
  • 2 Cleary EG, Gibson MA. Elastin-associated microfibrils and microfibrillar proteins. In: International Review of Connective Tissue Research. Hall DA, Jackson DS. eds. Academic Press, Inc.; 1983. pp 97-209.
  • 3 Gibson MA, Cleary EG. CL glycoprotein is the tissue form of type VI collagen. J Biol Chem 1985; 260: 11149-59.
  • 4 Sakai LY, Keene DR, Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 1986; 103: 2499-509.
  • 5 Maslen CL, Corson GM, Maddox BK, Glanville RW, Sakai LY. Partial sequence of a candidate gene for the Marfan syndrome. Nature 1991; 352: 334-7.
  • 6 Pytela R, Pierschbacher MD, Ginsberg MH, Plow EF, Ruoslahti E. Platelet membrane glycoprotein IIb/IIIa: Member of a family of Arg-Gly-Asp-specific adhesion receptors. Science 1986; 231: 1559-62.
  • 7 Ruggeri ZM, DeMarco L, Gatti L, Bader R, Montgomery RR. Platelets have more than one binding site for von Willebrand factor. J Clin Invest 1983; 72: 1-12.
  • 8 Nachman RL, Leung LLK. Complex formation of platelet membrane glycoproteins IIb and IIIa and fibrinogen. J Clin Invest 1982; 69: 263-9.
  • 9 Gardner JM, Hynes RO. Interaction of fibronectin with its receptor on platelets. Cell 1985; 42: 439-48.
  • 10 Thiagarajan P, Kelly K. Arg-Gly-Asp-dependent interaction of vitronectin with activated platelets. Blood 1987; 70: 363a.
  • 11 Keene DR, Maddox BK, Kuo H-J, Sakai LY, Glanville RW. Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem 1991; 39: 441-9.
  • 12 Kielty CM, Whittaker SP, Grant ME, Shuttleworth CA. Attachment of human vascular smooth muscle cells to intact microfibrillar assemblies of collagen VI and fibrillin. J Cell Sci 1992; 103: 445-51.
  • 13 Rand JH, Patel ND, Schwartz E, Zhou S-L, Potter BJ. 150-kD von Willebrand factor binding protein extracted from human vascular subendothelium is type VI collagen. J Clin Invest 1991; 88: 253-9.
  • 14 Rand JH, Wu X-X, Uson RR, Potter BJ, Gordon RE. Co-localization of von Willebrand factor and type VI collagen in human vascular subendothelium. Am J Pathol 1993; 142: 843-50.
  • 15 Wu X-X, Gordon RE, Glanville RW, Kuo H-J, Uson RR, Rand JH. Morphologic relationships of von Willebrand factor, type VI collagen and fibrillin in human vascular subendothelium. Am J Pathol 1996; 149: 283-91.
  • 16 von Der Mark H, Aumailley M, Wick G, Fleischmajer R, Timpl R. Immunochemistry, genuine size and tissue localization of collagen VI. Eur J Biochem 1984; 142: 493-502.
  • 17 Furthmayr H, Wiedemann H, Timpl R, Odermatt E, Engel J. Electron-microscopical approach to a structural model of intima collagen. Biochem J 1983; 211: 303-11.
  • 18 Titani K, Kumar S, Takio K, Ericsson LH, Wade RD, Ashida K, Walsh KA, Chopek MW, Sadler JE, Fujikawa K. Amino acid sequence of human von Willebrand factor. Biochem 1986; 25: 3171-84.
  • 19 Bonaldo P, Russo V, Bucciotti F, Bressan GM, Colombatti A. α1 chain of chick type VI collagen. J Biol Chem 1989; 264: 5575-80.
  • 20 Pareti FI, Fujimura Y, Dent JA, Holland LZ, Zimmerman TS, Ruggeri ZM. Isolation and characterization of a collagen binding domain in human von Willebrand factor. J Biol Chem 1986; 261: 15310-5.
  • 21 Fujimura Y, Titani K, Holland LZ, Russel SR, Roberts JR, Elder JH, Ruggeri ZM, Zimmerman TS. von Willebrand factor: A reduced and alkylated 52/48-kDa fragment beginning at amino acid residue 449 contains the domain interacting with platelet glycoprotein Ib. J Biol Chem 1986; 261: 381-5.
  • 22 Fujimura Y, Titani K, Holland LZ, Roberts JR, Kostel P, Ruggeri ZM, Zimmerman TS. A heparin-binding domain of human von Willebrand factor. Characterization and localization to a tryptic fragment extending from amino acid residue Val-449 to Lys-728. J Biol Chem 1987; 262: 1734-9.
  • 23 Titani K, Walsh KA. Human von Willebrand factor: The molecular glue of platelet plugs. Trends Biochem Sci 1988; 13: 94-7.
  • 24 Chu M-L, Conway D, Pan T-C, Baldwin C, Mann K, Deutzmann R, Timpl R. Amino acid sequence of the triple-helical domain of human collagen type VI. J Biol Chem 1988; 263: 18601-6.
  • 25 Saelman EUM, Nieuwenhuis HK, Hese KM, de Groot PG, Heijnen HFG, Sage EH, Williams S, McKeown L, Gralnick HR, Sixma JJ. Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa (α2β1-Integrin). Blood 1994; 85: 1244-50.
  • 26 Ross JM, McIntire LV, Moake JL, Rand JH. Platelet adhesion and aggregation to human type VI collagen surfaces under physiological flow conditions. Blood 1995; 85: 1826-35.
  • 27 Dise CA, Bursh JW, Goodman DBD. Direct interaction of mepacrine with erythrocyte and platelet membrane phospholipid. J Biol Chem 1982; 257: 4701-4.
  • 28 Kuo H-J, Keene D, Glanville RW. Orientation of type VI collagen monomers in molecular aggregates. Biochem 1989; 28: 3757-62.
  • 29 Perris R, Kuo H-J, Glanville RW, Leibold S, Bronner-Fraser M. Neural crest cell interaction with type VI collagen is mediated by multiple cooperative binding sites within triple-helix and globular domains. Exp Cell Res 1993; 209: 103-17.
  • 30 Perris R, Kuo HJ, Glanville RW, Bonner-Fraser M. Collagen type VI in neural crest development: distribution in situ and interaction with cell in vitro. Dev Dyn 1993; 198: 135-49.
  • 31 Folie BJ, McIntire LV, Lasslo A. Effects of a novel antiplatelet agent in mural thrombogenesis on collagen-coated glass. Blood 1988; 72: 1393-400.
  • 32 Einarsson S, Josefsson B, Lagerkvist S. Determination of amino acids with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. J Chromatogr 1983; 282: 609-18.
  • 33 Niiya K, Hodson E, Bader R, Byers-Ward V, Koziol JA, Plow EF, Ruggeri ZM. Increased surface expression of the membrane glycoprotein IIb/IIIa complex induced by platelet activation. Relationship to the binding of fibrinogen and platelet aggregation. Blood 1987; 70: 475-83.
  • 34 Handa M, Titani K, Holland LZ, Roberts JR, Ruggeri ZM. The von Willebrand factor-binding domain of platelet membrane glycoprotein Ib. J Biol Chem 1986; 261: 12579-85.
  • 35 Ey PL, Prowse SJ, Jenkin CR. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-Sepharose. Immunochemistry 1978; 15: 429-36.
  • 36 Moake JL, Turner NA, Stathopoulos NA, Nolasco LH, Hellums JD. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest 1986; 78: 1456-61.
  • 37 Hubbell JA, McIntire LV. Technique for visualization and analysis of mural thrombogenesis. Rev Sci Instrum 1986; 57: 892-7.
  • 38 Abbassi O, Kishimoto TK, McIntire LV, Anderson DC, Smith CW. E-Selectin supports rolling in vitro under conditions of flow. J Clin Invest 1993; 92: 2719-30.
  • 39 Goldsmith HL, Turitto VT. Rheological aspects of thrombosis and haemostasis: Basic principles and applications. Thromb Haemost 1986; 55: 415-35.
  • 40 Frangos JA, McIntire LV, Eskin SG. Shear stress induced stimulation of mammalian cell metabolism. Biotechnol Bioeng 1988; 32: 1053-60.
  • 41 Woolson RF. Statistical Methods for the Analysis of Biomedical Data. John Wiley and Sons, Inc.; 1987. pp 513.
  • 42 Daniel WW. Biostatistics: A foundation for analysis in the health sciences. John Wiley and Sons, Inc.; 1991. pp 740.
  • 43 Alevriadou BR, Moake JL, Turner NA, Ruggeri ZM, Folie BJ, Phillips MD, Schreiber AB, Hrinda ME, McIntire LV. Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 1993; 81: 1263-76.