Thromb Haemost 1998; 80(02): 263-265
DOI: 10.1055/s-0037-1615185
Rapid Communication
Schattauer GmbH

Oligosaccharide Configuration of Fibrinogen Kaiserslautern: Electrospray Ionisation Analysis of Intact γ Chains

Stephen O. Brennan
1   Molecular Pathology Laboratory, Canterbury Health Laboratories, Christchurch Hospital, Christchurch, New Zealand
,
Ralph M. Loreth
2   Klinische Hämostaseologie, Westpfalz-Klinikum, Kaiserslautern, Germany
,
Peter M. George
1   Molecular Pathology Laboratory, Canterbury Health Laboratories, Christchurch Hospital, Christchurch, New Zealand
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 10. Februar 1998

Accepted 27. April 1998

Publikationsdatum:
08. Dezember 2017 (online)

Summary

Electrospray ionisation mass spectrometry was used to probe the structure of the new N-linked oligosaccharide in fibrinogen Kaiserslautern (γ 380 Lys→Asn). The mass increase of 2177 Da in the new γ chain indicated the attachment of a fully sialylated biantennary oligosaccharide on the new Asn residue; the expected increase for this change being 2192 Da. Some 95% of the new oligosaccharide was in the disialylated state while only 5% of the endogenous γ chain carbohydrate was disialylated in the control. Mass measurements of intact Kaiserslautern γ chains after neuraminidase treatment of the native fibrinogen confirmed a total of three residues of sialic acid in the dominant isoform. Incubation with endoglycosidase F showed that the new oligosaccharide was more resistant to hydrolysis than the endogenous one. Recent X-ray analyses of covalently linked D domains show that position γ 380 is distant from both the GPR binding pocket and the D-D interface. It appears that the polymerisation defect of this fibrinogen results from electrostatic repulsion between condensing protofibrils and that this is induced by the two new residues of sialic acid that are present on the new γ chain.

 
  • References

  • 1 Henschen A, McDonagh J. Fibrinogen, fibrin and factor XIII. In: Blood Coagulation. Zwaal FFA, Hemker HC. eds. Elsevier Science Publishers BV; Amsterdam: 1986. pp 171-241.
  • 2 Doolittle RF. The molecular biology of fibrin. In: The Molecular Basis of Blood Diseases. Stamatoyannopoulos G, Nienhuis AW, Majerus PW, Varmus H. eds. WB Saunders Company; Philadelphia: 1994. pp 701-23.
  • 3 Dang CV, Shin CK, Bell WR, Nagaswami C, Weisel JW. Fibrinogen sialic acid residues are low affinity calcium binding sites that influence fibrin assembly. J Biol Chem 1989; 264: 15104-8.
  • 4 Martinez J, Palascak J, Peters C. Functional and metabolic properties of human asialo fibrinogen. J Lab Clin Med 1977; 89: 367-77.
  • 5 Langer BC, Weisel JW, Dinauer PA, Nagaswami C, Bell WR. Deglycosylation of fibrinogen accelerates polymerisation and increases lateral aggregation of fibrin fibers. J Biol Chem 1988; 263: 15056-63.
  • 6 Ridgway HJ, Brennan SO, Loreth RM, George PM. Fibrinogen Kaiserslautern (γ 380 Lys to Asn) a new glycosylated variant with delayed polymerisation. Brit J Haematol 1997; 99: 562-9.
  • 7 Brennan SO. Electrospray ionisation analysis of human fibrinogen. Thromb Haemost 1997; 78: 1055-8.
  • 8 Brennan SO, Myles T, Peach R, Donaldson D, George PM. Albumin Redhill (-1 Arg, 320 Ala→Thr) a glycoprotein variant of human albumin whose precursor has an aberrant signal peptide cleavage site. Proc Natl Acad Sci USA 1990; 87: 26-30.
  • 9 Brennan SO, Hammonds B, Spearing R, George PM. Electrospray ionisation mass spectrometry facilitates detection of fibrinogen (Bβ 14 Arg→Cys) mutation in a family with thrombosis. Thromb Haemost 1997; 78: 1484-7.
  • 10 Townsend RR, Hilliker E, Li Y-T, Laine RA, Bell WR, Lee YC. Carbohydrate structure of human fibrinogen. J Biol Chem 1982; 257: 9704-10.
  • 11 Townsend RR, Heller DN, Fenselau CC, Lee YC. Determination of the sialylation pattern of human fibrinogen glycopeptides with fast atom bombardment. Biochemistry 1984; 23: 6389-92.
  • 12 Martinez J, MacDonald KA, Palascak JE. The role of sialic acid in the dysfibrinogemia associated with liver disease: distribution of sialic acid on constituent chains. Blood 1983; 61: 1196-202.
  • 13 Maekawa H, Yamazumi K, Muramatsu S, Kaneko M, Hirata H, Takahashi N, Arocha-Pinango CL, Rodriguez S, Nagy H, Perez-Rrequejo JL, Matsuda M. Fibrinogen Lima: a homozygous dysfibrinogen with an Aα Arg-141 to Ser substitution associated with extra N-Glycosylation at Asn-139. J Clin Invest 1992; 90: 67-76.
  • 14 Yamazumi K, Simura K, Terukina S, Takahashi N, Matsuda M. A γ Met 310 to Thr substitution and consequent N-glycosylation at γ Asn-308 identified in a congenital dysfibrinogenemia associated with posttraumatic bleeding, fibrinogen Asahi. J Clin Invest 1989; 83: 1590-7.
  • 15 Matsuda M. The steucture function relationship of hereditary dysfibrinogens. Int J Haematol 1996; 64: 167-79.
  • 16 Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its counterpart from fibrin. Nature 1997; 389: 455-62.
  • 17 Mosesson M, Siebenlist KR, DiOrio JP, Matsudo M, Hainfeld JF, Wall JS. The role of fibrinogen D domain intermolecular association sites in the polymerisation of fibrin and fibrinogen Tokyo II (γ275 Arg→Cys). J Clin Invest 1995; 96: 1053-8.