Osteologie 2008; 17(01): 24-30
DOI: 10.1055/s-0037-1619845
Original- und Übersichtsarbeiten
Schattauer GmbH

Ganzkörpervibrationstraining – ein neuer Ansatz in der Osteoporoseprävention?

Whole Body Vibration: a new concept in the prevention of osteoporosis?
S. v. Stengel
1   Institut für Medizinische Physik, Friedrich Alexander-Universität Erlangen-Nürnberg
,
W. Kemmler
1   Institut für Medizinische Physik, Friedrich Alexander-Universität Erlangen-Nürnberg
,
K. Engelke
1   Institut für Medizinische Physik, Friedrich Alexander-Universität Erlangen-Nürnberg
› Author Affiliations
Further Information

Publication History

Publication Date:
28 December 2017 (online)

Zusammenfassung

Ganzkörpervibrationstraining ist eine neue Trainingsmethode, deren Effektivität zur Osteoporoseprävention derzeit untersucht wird. In tierexperimentellen Studien konnte gezeigt werden, dass mechanische Reize mit geringer Intensität eine hohe osteoanabole Wirkung entfalten, wenn sie mit einer hohen Reizfrequenz appliziert werden. Im Gegensatz dazu weisen die wenigen klinischen Vibrationsstudien mit humanen Kollektiven heterogene Ergebnisse auf. Dennoch deuten sie darauf hin, dass Ganzkörpervibrationstraining auch beim Menschen einen Effekt im Zusammenhang mit der positiven Beeinflussung osteoporotischer Risikofaktoren haben könnte. Die Interpretation der Studienergebnisse zur Aussprache konkreter Trainingsempfehlungen gestaltet sich auf Grund großer Unterschiede hinsichtlich des angewendeten Vibrationsreizes, der Trainingsprotokolle, der untersuchten Kollektive und der gewählten osteodensitometrischen Endpunkte äußerst schwierig. Sollte der positive Effekt von Vibrationstraining in weiteren Studien bestätigt werden, so würde dieses Training besonders für ältere Menschen, bei denen intensive, knochenwirksame Reize innerhalb eines körperlichen Trainings schwer realisierbar sind, eine wirksame Methode zur Reduktion des Osteoporoserisikos darstellen.

Summary

The efficiency of whole body vibration (WBV) for the prevention of osteoporosis is currently being investigated. In animal studies low intensity mechanical stimuli proved to be osteogenic, if they were applied at high frequencies. In animals whole body vibration was highly effective in increasing bone mineral density and bone strength of loaded bones. The results of the very few clinical vibration trials are heterogenous. However, they suggest that WBV may have the potential to reduce osteoporotic risk factors for humans as well. The interpretation of the study results in order to define training recommendations is difficult because of the great differences in the applied vibration stimuli, in the training protocols, in the sample characteristics and in the osteodensitometric measurements. If the benefit of WBV will be confirmed in further studies, WBV training will be a suitable method for reducing the risk of osteoporosis especially in the elderly because due to safety reasons high intensity training stimuli can hardly be realized in this group.

 
  • Literatur

  • 1 Anonymous. Consensus Development Conference: Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 1993; 94: 646-650.
  • 2 Ringe JD. Osteoporose - Differentialdiagnose und Differentialtherapie. Stuttgart: Thieme; 1997
  • 3 Pfeifer M, Wittenberg R, Würtz R, Minne HW. Schenkelhalsfrakturen in Deutschland. Dt Ärzteblatt 2001; 26 (06) 1751-1757.
  • 4 Anonymous. Osteoporose-Bericht zur Lage in Europa liegt vor. Dt Ärzteblatt 1998; 44 (10) 2724.
  • 5 Voukelatos A, Cumming RG, Lord SR, Rissel C. A Randomized, Controlled Trial of tai chi for the Prevention of Falls: The Central Sydney tai chi Trial. JAm Geriatr Soc 2007; 55 (08) 1185-1191.
  • 6 Voukelatos A, Metcalfe A. Central Sydney Tai Chi Trial: methodology. N S W Public Health Bull 2002; 13 (1-2): 19.
  • 7 Gillespie LD, Gillespie WJ, Robertson MC. et al. Interventions for preventing falls in elderly people. Cochrane Database Syst Rev. 2003 04 CD000340.
  • 8 Wolf SL, Barnhart HX, Kutner NG. et al. Reducing frailty and falls in older persons: an investigation of Tai Chi and computerized balance training. Atlanta FICSIT Group. Frailty and Injuries: Cooperative Studies of Intervention Techniques. J Am Geriatr Soc 1996; 44 (05) 489-497.
  • 9 von Stengel S, Kemmler W, Engelke K. et al. Power training is more effective for maintaining bone mineral density in postenopausal women. J Appl Physiol 2005; 99 (01) 181-188.
  • 10 Kemmler W, von Stengel S, Weineck J. et al. Exercise effects on menopausal risk factors of early postmenopausal women: 3-yr Erlangen fitness osteoporosis prevention study results. Med Sci Sports Exerc 2005; 37 (02) 194-203.
  • 11 Bassey EJ, Ramsdale SJ. Increase in femoral bone density in young women following high-impact exercise. Osteoporos Int 1994; 04 (02) 72-75.
  • 12 Kallinen M, Markku A. Aging, physical activity and sports injuries. An overview of common sports injuries in the elderly. Sports Med 1995; 20 (01) 41-52.
  • 13 Rubin C, Xu G, Judex S. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. Faseb J 2001; 15 (12) 2225-2229.
  • 14 Rubin C, Turner AS, Mallinckrodt C. et al. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 2002; 30 (03) 445-452.
  • 15 Frost HM. Bone mass and the mechanostat. A proposal. Anat Rec 1987; 219: 1-19.
  • 16 Hsieh YF, Turner CH. Effects of loading frequency on mechanically induced bone formation. J Bone Miner Res 2001; 16 (05) 918-924.
  • 17 McDonald F, Yettram AL, MacLeod K. The response of bone to external loading regimens. Med Eng Phys 1994; 16 (05) 384-397.
  • 18 Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985; 37 (04) 411-417.
  • 19 Turner CH, Forwood MR, Rho JY, Yoshikawa T. Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res 1994; 09 (01) 87-97.
  • 20 Mosley JR, Lanyon LE. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Bone 1998; 23 (04) 313-318.
  • 21 O’Connor JA, Lanyon LE, MacFie H. The influence of strain rate on adaptive bone remodelling. J Biomech 1982; 15 (10) 767-781.
  • 22 Skerry TM, Peet Nm. „Unloading” exercises increases bone formation in rats. J Bone Min Res 1997; 12: 1520.
  • 23 Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Physiol Endocrinol Metab 1995; 269: E438-E442.
  • 24 Cullen DM, Smith RT, Akhter MP. Bone-loading response varies with strain magnitude and cycle number. J Appl Physiol 2001; 91 (05) 1971-1976.
  • 25 McLeod KJ, Rubin CT. Sensitivity of the bone remodeling response to the frequency of applied strain. Trans Orthop Res Soc 1992; 17: 533.
  • 26 Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 1984; 66 (03) 397-402.
  • 27 Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 1997; 12 (09) 1480-1485.
  • 28 Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency specific, low-amplitude mechanical strain. Clin Orthop 1994; 298: 165-174.
  • 29 Turner CH, Forwood MR, Otter MW. Mechanotransduction in bone: do bone cells act as sensors of fluid flow?. Faseb J 1994; 08 (11) 875-878.
  • 30 Von Stengel S, Kemmler W, Lauber D. et al. Differential Effects of Strength versus Power Training on Maximum Muscle Strength and Bone Mineral Density in Postmenopausal Women –A two year longitudinal study. British J Sports Med 2007; 41 (10) 649-655.
  • 31 Whalen RT, Carter DR. Influence of physical activity on the regulation of bone density. J Biomech 1988; 21 (10) 825-837.
  • 32 Kemmler W, von Stengel S, Beeskow C. et al. Umsetzung moderner trainingswissenschaftlicher Erkenntnisse in ein knochenanaboles Training für früh-postmenopausale Frauen. Die Erlanger Fitness Osteoporose Präventionsstudie (EFOPS). Osteologie 2004; 13 (02) 65-77.
  • 33 Qin YX, Rubin CT, McLeod KJ. Nonlinear dependance of loading intensity and cycle number in the maintenance of bone mass and morphology. Journal of Orthopaedic Research 1998; 16: 482-489.
  • 34 Judex S, Lei X, Han D, Rubin C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech 2007; 40 (06) 1333-1339.
  • 35 Burger EH, Klein-Nulend J, Smit TH. Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon--a proposal. J Biomech 2003; 36 (10) 1453-1459.
  • 36 Burger EH, Klein-Nulend J. Mechanotransduction in bone – role of the lacuno-canalicular network. Faseb J 1999; 13 (Suppl): S101-S112.
  • 37 Qin YX, Kaplan T, Saldanha A, Rubin C. Fluid pressure gradients, arising from oscillations in intramedullary pressure, is correlated with the formation of bone and inhibition of intracortical porosity. J Biomech 2003; 36 (10) 1427-1437.
  • 38 Weinbaum S, Cowin SC, Zeng Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 1994; 27 (03) 339-360.
  • 39 Lanyon LE, Skerry T. Postmenopausal osteoporosis is a failure of bone’s adaption to functional loading: a hypothesis. J Bone Miner Res 2001; 16 (11) 1937-1947.
  • 40 Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC Musculoskelet Disord 2006; 07: 92.
  • 41 Russo CR, Lauretani F, Bandinelli S. et al. High-frequency vibration training increases muscle power in postmenopausal women. Arch Phys Med Rehabil 2003; 84 (12) 1854-1857.
  • 42 Verschueren SM, Roelants M, Delecluse C. et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res 2004; 19 (03) 352-359.
  • 43 Torvinen S, Kannus P, Sievanen H. et al. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance:a randomized controlled study. J Bone Miner Res 2003; 18 (05) 876-884.
  • 44 Rubin C, Recker R, Cullen D. et al. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Miner Res 2004; 19 (03) 343-351.
  • 45 Gilsanz V, Boechat MI, Gilsanz R. et al. Gender differences in vertebral sizes in adults: biomechanical implications. Radiology 1994; 190: 678-682.
  • 46 Ward K, Alsop C, Caulton J. et al. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res 2004; 19 (03) 360-369.
  • 47 Tanaka SM, Alam IM, Turner CH. Stochastic resonance in osteogenic response to mechanical loading. Faseb J 2003; 17 (02) 313-314.
  • 48 Welch JM, Weaver CM, Turner CH. Adaptations to free-fall impact are different in the shafts and bone ends of rat forelimbs. J Appl Physiol 2004; 97 (05) 1859-1865.
  • 49 Gilsanz V, Wren TA, Sanchez M. et al. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Miner Res 2006; 21 (09) 1464-1474.