Tierarztl Prax Ausg K Kleintiere Heimtiere 2014; 42(03): 151-156
DOI: 10.1055/s-0038-1623760
Original Article
Schattauer GmbH

Sagittal joint instability in the cranial cruciate ligament insufficient canine stifle

Caudal slippage of the femur and not cranial tibial subluxationSagittale Gelenkinstabilität im kreuzbandinsuffizienten kaninen KniegelenkKaudale Rutschbewegung des Femurs, nicht kraniale Subluxation der Tibia
J. Rey
1   Klinik für Kleintiere, Universität Leipzig, Leipzig
,
M. S. Fischer
2   Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, Jena
,
P. Böttcher
1   Klinik für Kleintiere, Universität Leipzig, Leipzig
› Author Affiliations
Financial support: This study was financially supported by the “Gesellschaft zur Förderung Kynologischer Forschung e.V.”, Bonn, Germany (association for support of cynological research).
Further Information

Publication History

Received: 23 August 2013

Accepted after revision: 13 January 2014

Publication Date:
06 January 2018 (online)

Summary

Objective: This in vivo study qualitatively describes the sagittal motion pattern of the cranial cruciate ligament (CrCL) insufficient canine stifle in operated and unoperated joints with cranio-caudal laxity on palpation. Material and methods: Sagittal stifle kinematics were recorded in vivo in dogs (> 15 kg BW) with unilateral (n = 7) or bilateral (n = 6) complete CrCL rupture and positive cranial drawer test as well as two sound control dogs using uniplanar fluoroscopic kinematography with the dogs walking on a treadmill. Stifle stability and sagittal motion pattern of the femur and the tibia were determined by visual inspection of the fluoroscopic video sequences. Results: Control dogs showed no cranio-caudal instability, identical to the contralateral stifles of the dogs with unilateral rupture. All unoperated stifles with CrCL rupture (n = 6) showed caudal slippage of the femur at the beginning of the stance phase. Of the 13 operated stifles (TightRope: n = 1, tibial tuberosity advancement, TTA: n = 6, tibial plateau leveling osteotomy, TPLO: n = 5, cranial closing wedge osteotomy, CCWO: n = 1) nine were unstable, showing the same motion pattern as the unoperated stifles. Conclusion: In the CrCL insufficient stifle with in vivo cranio-caudal instability caudal slippage of the distal femur at tow touch is the predominant motion pattern. Clinical significance: The discrepancy between in vivo motion pattern and in vitro simulation of CrCL insufficiency in which cranial tibial subluxation is the predominant sagittal motion pattern warrants further studies.

Zusammenfassung

Ziel: Diese In-vivo-Studie beschreibt qualitativ das sagittale Bewegungsmuster kreuzbandinsuffizienter Kniegelenke und solcher mit Schubladenphänomen nach operativer Stabilisierung. Material und Methoden: Die sagittale Kniegelenkskinematik wurde bei Hunden (> 15 kg KM) mit einseitigem (n = 7) und beidseitigem (n = 6) Riss des vorderen Kreuzbandes in vivo beurteilt, wobei die Probanden auf einem speziell für Hunde konstruierten Laufband liefen. Alle Gelenke waren zum Zeitpunkt der Ganganalyse palpatorisch instabil. Zwei gesunde Hunde dienten als Kontrolle. Die kraniokaudale Kniegelenkstabilität sowie das allgemeine sagittale Bewegungsmuster von Femur und Tibia wurden anhand uniplanarer fluoroskopischer Videosequenzen visuell beurteilt. Ergebnisse: Bei allen Kniegelenken der Kontrolltiere war ebenso wie bei den gesunden Kniegelenken unilateral betroffener Tiere keine kraniokaudale Instabilität erkennbar. Alle unoperierten Gelenke mit Riss des vorderen Kreuzbandes (n = 6) zeigten ein kaudal gerichtetes Abgleiten des distalen Femurs entlang des Tibiaplateaus zu Beginn der Standphase. Neun der 13 operierten Gelenke (TightRope: n = 1, TTA [tibial tuberosity advancement]: n = 6, TPLO [tibial plateau leveling osteotomy]: n = 5, Keilosteotomie [cranial closing wedge osteotomy, CCWO]: n = 1) wiesen eine Instabilität auf, identisch zum Bewegungsmuster der unoperierten instabilen Gelenke. Schlussfolgerung: Die sagittale Kniegelenkinstabilität im Zusammenhang mit einem Riss des vorderen Kreuzbandes ist durch eine kaudal gerichtete Rutschbewegung des Femurs beim Auffußen gekennzeichnet. Klinische Relevanz: Aufgrund der Diskrepanz zwischen dem Bewegungsmuster in vivo und der In-vitro-Simulation eines Kniegelenks mit rupturiertem vorderem Kreuzband, bei dem die kraniale Subluxation der Tibia die dominierende sagittale Bewegung darstellt, bedarf es weiterer Untersuchungen.

 
  • References

  • 1 Apelt D, Kowaleski MP, Boudrieau RJ. Effect of tibial tuberosity advancement on cranial tibial subluxation in canine cranial cruciate-deficient stifle joints: an in vitro experimental study. Vet Surg 2007; 36: 170-177.
  • 2 Apelt D, Pozzi A, Marcellin-Little DJ, Kowaleski MP. Effect of cranial tibial closing wedge angle on tibial subluxation: an ex vivo study. Vet Surg 2010; 39: 454-459.
  • 3 Arnoczky SP, Marshall JL. The cruciate ligaments of the canine stifle: an anatomical and functional analysis. Am J Vet Res 1977; 38: 1807-1814.
  • 4 Böttcher P, Rey J. In vivo kinematics of the canine stifle. 3rd World Veterinary Orthopaedic Congress 2010, Bologna, Italy; 58-59.
  • 5 Carobbi B, Ness MG. Preliminary study evaluating tests used to diagnose canine cranial cruciate ligament failure. J Small Anim Pract 2009; 50: 224-226.
  • 6 Chailleux N, Lussier B, De Guise J, Chevalier Y, Hagemeister N. In vitro 3-dimensional kinematic evaluation of 2 corrective operations for cranial cruciate ligament-deficient stifle. Can J Vet Res 2007; 71: 175-180.
  • 7 Cook JL, Luther JK, Beetem J, Karnes J, Cook CR. Clinical comparison of a novel extracapsular stabilization procedure and tibial plateau leveling osteotomy for treatment of cranial cruciate ligament deficiency in dogs. Vet Surg 2010; 39: 315-323.
  • 8 Damur D, Tepic S, Montavon P. Proximal tibial osteotomy for the repair of cranial cruciate-deficient stifle joints in dogs. Vet Comp Orthop Traum 2003; 16: 211-216.
  • 9 de Rooster H, Van Ryssen B, van Bree H. Diagnosis of cranial cruciate ligament injury in dogs by tibial compression radiography. Vet Rec 1998; 142: 366-368.
  • 10 Griffon D. Gastrocnemius dominance as a cause of cranial cruciate ligament disease (CCLD). ACVS Veterinary Symposium 2011, Chicago, IL; 334-335.
  • 11 Hagemeister N, Lussier B, Jaafar E, Clement J, Petit Y. Validation of an experimental testing apparatus simulating the stance phase of a canine pelvic limb at trot in the normal and the cranial cruciate-deficient stifle: an in vitro kinematic study. Vet Surg 2010; 39: 390-397.
  • 12 Heffron LE, Campbell JR. Morphology, histology and functional anatomy of the canine cranial cruciate ligament. Vet Rec 1978; 102: 280-283.
  • 13 Kim SE, Pozzi A, Kowaleski MP, Lewis DD. Tibial osteotomies for cranial cruciate ligament insufficiency in dogs. Vet Surg 2008; 37: 111-125.
  • 14 Kim SE, Pozzi A, Banks SA, Conrad BP, Lewis DD. Effect of tibial plateau leveling osteotomy on femorotibial contact mechanics and stifle kinematics. Vet Surg 2009; 38: 23-32.
  • 15 Kim SE, Pozzi A, Banks SA, Conrad BP, Lewis DD. Effect of tibial tuberosity advancement on femorotibial contact mechanics and stifle kinematics. Vet Surg 2009; 38: 33-39.
  • 16 Kim SE, Pozzi A, Banks SA, Conrad BP, Lewis DD. Effect of cranial cruciate ligament deficiency, tibial plateau leveling osteotomy, and tibial tuberosity advancement on contact mechanics and alignment of the stifle in flexion. Vet Surg 2010; 39: 363-370.
  • 17 Kim SE, Lewis DD, Pozzi A. Effect of tibial plateau leveling osteotomy on femorotibial subluxation: in vivo analysis during standing. Vet Surg 2012; 41: 465-470.
  • 18 Korvick DL, Pijanowski GJ, Schaeffer DJ. Three-dimensional kinematics of the intact and cranial cruciate ligament-deficient stifle of dogs. J Biomech 1994; 27: 77-87.
  • 19 Kowaleski MP, Apelt D, Mattoon JS, Litsky AS. The effect of tibial plateau leveling osteotomy position on cranial tibial subluxation: an in vitro study. Vet Surg 2005; 34: 332-336.
  • 20 Lafaver S, Miller NA, Stubbs WP, Taylor RA, Boudrieau RJ. Tibial tuberosity advancement for stabilization of the canine cranial cruciate ligamentdeficient stifle joint: surgical technique, early results, and complications in 101 dogs. Vet Surg 2007; 36: 573-586.
  • 21 Plesman R, Sharma A, Gilbert P, Campbell J, Johnston JD, Shmon C, Linn K. Radiographic landmarks for measurement of cranial tibial subluxation in the canine cruciate ligament deficient stifle. Vet Comp Orthop Traumatol 2012; 25: 478-487.
  • 22 Pozzi A, Kowaleski MP, Apelt D, Meadows C, Andrews CM, Johnson KA. Effect of medial meniscal release on tibial translation after tibial plateau leveling osteotomy. Vet Surg 2006; 35: 486-494.
  • 23 Pozzi A, Litsky AS, Field J, Apelt D, Meadows C, Johnson KA. Pressure distributions on the medial tibial plateau after medial meniscal surgery and tibial plateau levelling osteotomy in dogs. Vet Comp Orthop Traumatol 2008; 21: 8-14.
  • 24 Pozzi A, Kim SE. Biomechanics of the normal and cranial cruciate ligament-deficient stifle. In: Advance in the Canine Cranial Cruciate Ligament. Muir P. ed. Ames, Iowa, USA: Wiley-Blackwell; 2010: 37-42.
  • 25 Reif U, Hulse DA, Hauptman JG. Effect of tibial plateau leveling on stability of the canine cranial cruciate-deficient stifle joint: an in vitro study. Vet Surg 2002; 31: 147-154.
  • 26 Slocum B, Devine TD. Cranial tibial thrust: a primary force in the canine stifle. J Am Vet Med Assoc 1983; 183: 456-459.
  • 27 Slocum B, Slocum TD. Tibial plateau leveling osteotomy for repair of cranial cruciate ligament rupture in the canine. Vet Clin North Am Small Anim Pract 1993; 23: 777-795.
  • 28 Slocum B, Slocum TD. Tibial plateau leveling osteotomy for cranial cruciate ligament rupture. In: Current Techniques in Small Animal Surgery. Bojrab MJ. Baltimore: Williams & Wilkins; 1998: 1209-1215.
  • 29 Snelderwaard P, De Groot JH, Deban SM. Digital video combined with conventional radiography creates an excellent high-speed X-ray video system. J Biomech 2002; 35: 1007-1009.
  • 30 Tashman S, Anderst W. In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. J Biomech Eng. 2003 125. 238.
  • 31 Tashman S, Anderst W, Kolowich P, Havstad S, Arnoczky S. Kinematics of the ACL-deficient canine knee during gait: serial changes over two years. J Orthop Res 2004; 22: 931-941.
  • 32 Warzee CC, Dejardin LM, Arnoczky SP, Perry RL. Effect of tibial plateau leveling on cranial and caudal tibial thrusts in canine cranial cruciate-deficient stifles: an in vitro experimental study. Vet Surg 2001; 30: 278-286.