Nuklearmedizin 2010; 49(S 01): S5-S10
DOI: 10.1055/s-0038-1626535
Übersichtsarbeit
Schattauer GmbH

Strahlenbiologie

Sicht der NuklearmedizinBiological aspects of radiation in nuclear medicine
J. Kotzerke
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden
2   OncoRay – Zentrum für Innovationskompetenz Strahlenforschung in der Onkologie, Medizinische Fakultät, Universitätsklinikum Carl Gustav Carus, TU Dresden
3   PET-Zentrum, Forschungszentrum Dresden-Rossendorf
,
L. Oehme
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden
3   PET-Zentrum, Forschungszentrum Dresden-Rossendorf
› Author Affiliations
Further Information

Publication History

Eingegangen: 01 October 2010

angenommen: 01 October 2010

Publication Date:
24 January 2018 (online)

Summary

Radiotherapy with unsealed radionuclides differs from external radiotherapy with regard to the radiation quality and energy range, the regional dose uniformity and the time course of irradiation regimen. External radiotherapy is planned precisely and can be applied to a target volume independently from blood flow during a course of irradiation fractions. In contrary, administered radiopharmaceuticals distribute according to their pharmacokinetic properties and generate a continuous irradiation corresponding to the effective halflife. The resulting dose rates are approximately 1 Gy/min and 1 Gy/h, respectively. The bio – kinetics of radiopharmaceuticals involves cellular accumulation and retention with highly variable affinity to specific organs that can be modulated as well. A remarkable dose gradient is found at the edge of volumes with enhanced uptake. The biological effect of an irradiation with decreasing intensity can be compared with the radiation effect caused by conventional fractionation with 2 Gy a day in external beam therapy by means of the linear-quadratic model. However, the experimental validation of this translation is still under investigation. Radionuclide therapy is usually performed in several cycles some month apart. This procedure fails to meet external radiotherapy. The vision of a combined external-internal radiotherapy requires efforts for a common dosimetry approach both in vitro and in vivo with a physical and biological verification of the results.

Zusammenfassung

Die Radiotherapie mit offenen Radionukliden unterscheidet sich neben Strahlungsqualität und -energie auch in der regionalen Dosis – homogenität und den zeitlichen Dimensionen der Bestrahlung von der externen Radiotherapie. Externe Radiotherapie kann exakt geplant, gezielt und lokal umschrieben unabhängig von regionaler Durchblutung, wiederholt in kurzen Fraktionen appliziert werden. Dagegen folgt die Anreicherung von Radiopharmaka im Organismus der Pharmakokinetik, und sie sind entsprechend ihrer effektiven Halbwertszeit über einen längeren Zeitraum kontinuierlich wirksam. Daraus resultieren Unterschiede in der Dosisleistung von 1 Gy/ min gegenüber maximal 1 Gy/h. Die Biokinetik der Radiopharmaka umfasst zelluläre Akkumulation und Retention mit stark variabler Affinität zu einzelnen Organen und kann moduliert werden. Im Randbereich von Mehranreicherungen fällt die Dosis steil ab. Die biologische Wirkung der kontinuierlichen Bestrahlung sinkender Intensität lässt sich mittels linear-quadratischem Modell in die Wirkung der fraktionierten Applikation in 2 Gy-Einheiten umrechnen, wobei jedoch bislang der Gültigkeitsbereich dieser Translation noch nicht bestimmt wurde. Die Sequenz wiederholter Applikation offener Radionuklide im Abstand von Monaten findet in der externen Radiotherapie keine Entsprechung. Für eine kombinierte externe – interne Radiotherapie sind Anstrengungen für eine gemeinsame Dosimetrie zu unternehmen, die in vitro und in vivo physikalisch und biologisch zu verifizieren ist.

 
  • Literatur

  • 1 Anderson CJ, Bulte JW, Chen K. et al. Design of targeted cardiovascular molecular imaging probes. J Nucl Med 2010; 51 (Suppl 1) 3S-17S.
  • 2 Baechler S, Hobbs RF, Prideaux AR. et al. Extension of the biological effective dose to the MIRD schema and possible implications in radionuclide therapy dosimetry. Med Phys 2008; 35: 1123-1134.
  • 3 Beyreuther E, Dorr W, Lehnert A. et al. Relative biological effectiveness of 25 and 10 kV X-rays for the induction of chromosomal aberrations in two human mammary epithelial cell lines. Radiat Environ Biophys 2009; 48: 333-340.
  • 4 Bodei L, Cremonesi M, Ferrari M. et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging 2008; 35: 1847-1856.
  • 5 Bodey RK, Flux GD, Evans PM. Combining dosimetry for targeted radionuclide and external beam therapies using the biologically effective dose. Cancer Biother Radiopharm 2003; 18: 89-97.
  • 6 Burdick MJ, Neumann D, Pohlman B. et al. External beam radiotherapy followed by 90Y ibritumomab tiuxetan in relapsed or refractory bulky follicular lymphoma. Int J Radiat Oncol Biol Phys. 2010 doi: 10.1016/j.ijrobp.2009.12.030.
  • 7 Calabrese EJ, Bachmann KA, Bailer AJ. et al. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol 2007; 222: 122-128.
  • 8 Chow E, Harris K, Fan G. et al. Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol 2007; 25: 1423-1436.
  • 9 Cremonesi M, Botta F, Di Dia A. et al. Dosimetry for treatment with radiolabelled somatostatin analogues. A review. Q J Nucl Med Mol Imaging 2010; 54: 37-51.
  • 10 Cremonesi M, Ferrari M, Bodei L. et al. Dosimetry in Peptide radionuclide receptor therapy: a review. J Nucl Med 2006; 47: 1467-1475.
  • 11 Dale RG. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol 1985; 58: 515-528.
  • 12 Dohan O, De la Vieja A, Paroder V. et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 2003; 24: 48-77.
  • 13 Dunkelmann S, Kunstner H, Nabavi E. et al. Lithium as an adjunct to radioiodine therapy in Graves' disease for prolonging the intrathyroidal effective halflife of radioiodine. Useful or not? Nuklearmedizin 2006; 45: 213-218.
  • 14 Emami B, Lyman J, Brown A. et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991; 21: 109-122.
  • 15 Freudenberg R, Andreeff M, Oehme L, Kotzerke J. Dosimetry of cell-monolayers in multiwell plates. Nuklearmedizin 2009; 48: 120-126.
  • 16 Friesen C, Glatting G, Koop B. et al. Breaking chemoresistance and radioresistance with 213Bi anti-CD45 antibodies in leukemia cells. Cancer Res 2007; 67: 1950-1958.
  • 17 Friesen C, Lubatschofski A, Kotzerke J. et al. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells. Eur J Nucl Med Mol Imaging 2003; 30: 1251-1261.
  • 18 Gabriel M, Andergassen U, Putzer D. et al. Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging 2010; 54: 92-99.
  • 19 Kahmann C, Wunderlich G, Freudenberg R. et al. Radioprotection of thyroid cells mediated by methimazole. Int J Radiat Biol 2010; 86: 811-816.
  • 20 Krohn T, Meyer PT, Ocklenburg C. et al. Stunning in radioiodine therapy of benign thyroid disease. Quantification and therapeutic relevance. Nuklearmedizin 2008; 47: 248-254.
  • 21 Liu ZG, Baskaran R, Lea-Chou ET. et al. Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature 1996; 384: 273-276.
  • 22 Madsen MT, Bushnell DL, Juweid ME. et al. Potential increased tumor-dose delivery with combined 131I-MIBG and 90Y-DOTATOC treatment in neuroendocrine tumors: a theoretic model. J Nucl Med 2006; 47: 660-667.
  • 23 Nestle U, Kotzerke J. PTV – PET traced volume?. Nuklearmedizin 2009; 48: 127-129.
  • 24 Niu G, Sun X, Cao Q. et al. Cetuximab-based immunotherapy and radioimmunotherapy of head and neck squamous cell carcinoma. Clin Cancer Res 2010; 16: 2095-2105.
  • 25 Oehme L, Dorr W, Wust P, Kotzerke J. Influence of time-dose-relationships in therapeutic nuclear medicine applications on biological effectiveness of irradiation. Consequences for dosimetry. Nuklearmedizin 2008; 47: 205-209.
  • 26 Paganelli G, De Cicco C, Ferrari ME. et al. Intraoperative avidination for radionuclide treatment as a radiotherapy boost in breast cancer: results of a phase II study with 90Y-labeled biotin. Eur J Nucl Med Mol Imaging 2010; 37: 203-211.
  • 27 Perillo-Adamer F, Kosinski M, Dupertuis YM. et al. Fluorodeoxyuridine mediated cell cycle synchronization in S-phase increases the Auger radiation cell killing with 125I-iododeoxyuridine. Nuklearmedizin 2009; 48: 233-242.
  • 28 Rolleman EJ, Bernard BF, Breeman WA. et al. Molecular imaging of reduced renal uptake of radiolabelled [DOTA0,Tyr3]octreotate by the combination of lysine and Gelofusine in rats. Nuklearmedizin 2008; 47: 110-115.
  • 29 Rolleman EJ, Krenning EP, Bernard BF. et al. Long-term toxicity of [177Lu-DOTA (0),Tyr (3)]octreotate in rats. Eur J Nucl Med Mol Imaging 2007; 34: 219-227.
  • 30 Sabri O, Zimny M, Schulz G. et al. Success rate of radioiodine therapy in Graves' disease: the influence of thyrostatic medication. J Clin Endocrinol Metab 1999; 84: 1229-1233.
  • 31 Sieger S, Jiang S, Schonsiegel F. et al. Tumour-specific activation of the sodium/iodide symporter gene under control of the glucose transporter gene 1 promoter (GTI-1.3). Eur J Nucl Med Mol Imaging 2003; 30: 748-756.
  • 32 Souchon R, Wenz F, Sedlmayer F. et al. DEGRO practice guidelines for palliative radiotherapy of metastatic breast cancer: bone metastases and metastatic spinal cord compression (MSCC). Strahlenther Onkol 2009; 185: 417-424.
  • 33 Stewart FA, Luts A, Lebesque JV. The lack of long-term recovery and reirradiation tolerance in the mouse kidney. Int J Radiat Biol 1989; 56: 449-462.
  • 34 Walter RB, Press OW, Pagel JM. Pretargeted radioimmunotherapy for hematologic and other malignancies. Cancer Biother Radiopharm 2010; 25: 125-142.
  • 35 Wendisch M, Drechsel J, Freudenberg R. et al. Cellular damage in vitro. Nuklearmedizin 2009; 48: 208-214.
  • 36 Wessels BW, Konijnenberg MW, Dale RG. et al. MIRD pamphlet No. 20: The effect of model assumptions on kidney dosimetry and response – implications for radionuclide therapy. J Nucl Med 2008; 49: 1884-1899.
  • 37 Zanzonico PB. Internal radionuclide radiation dosimetry: a review of basic concepts and recent developments. J Nucl Med 2000; 41: 297-308.