Nervenheilkunde 2009; 28(10): 727-731
DOI: 10.1055/s-0038-1627151
Nuklearmedizinische Bildgebung
Schattauer GmbH

Positronen-Emissions-Tomografie bei Substanzmissbrauch und Sucht

Positron emission tomography in substance abuse and addiction
M. Schreckenberger
1   Klinik und Poliklinik für Nuklearmedizin, Johannes-Gutenberg-Universität Mainz
› Author Affiliations
Further Information

Publication History

Eingegangen am: 06 June 2009

angenommen am: 09 June 2009

Publication Date:
19 January 2018 (online)


Die neurofunktionelle Bildgebung mittels Positronen- Emissions-Tomografie (PET) hat in den letzten zwei Dekaden einen maßgeblichen Beitrag zur Erforschung der neurobiologischen Grundlagen von Substanzmissbrauch und Abhängigkeit geleistet. So ist es möglich, neben der Identifikation wichtiger Netzwerkstrukturen (z. B. Belohnungssystem und frontolimbische Schleifen) auch die beteiligten Neurotransmittersysteme (z. B. mesolimbische dopaminerge Projektionen) experimentell in vivo zu untersuchen. Derzeit wird die PET zunehmend in der Therapieforschung zur biologischen Evaluation potenzieller „Anti- Craving“-Substanzen eingesetzt. Der vorliegende Artikel gibt einen kurzgefassten Überblick über den aktuellen Stand der PET-Forschung bei Substanzmissbrauch und Abhängigkeitserkrankungen.


In the last two decades functional neuroimaging by means of PET could considerably contribute to neurobiological research in substance abuse and addiction. In vivo functional neuroimaging allows identifying the relevant network structures (i. e. reward system and fronto-limbic loops) as well as investigating the underlying transmitter systems (i. e. mesolimbic dopaminergic projections). For the last years, PET also gains increasing relevance in therapy research in order to evaluate potential “anti-craving” drugs on a biological basis. This article gives a short survey on the current state of PET research in substance abuse and addiction.

  • Literatur

  • 1 Bencherif B. et al. Mu-opioid receptor binding measured by [11C]carfentanil positron emission tomography is related to craving and mood in alcohol dependence. Biol Psychiatry 2004; 55: 255-62.
  • 2 Bergstrom M. et al. Regional deposition of inhlaed 11C-nicotine vapor in the human airway as visualized by positron emissoion tomography. Clin Pharmacol Ther 1995; 57: 309-17.
  • 3 Berke J, Hyman S. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 2000; 25: 515-32.
  • 4 Block RI. et al. Effects of frequent marijuana use on memory-related regional regional cerebral blood flow. Pharmcol Biochem Behave 2002; 72: 237-50.
  • 5 Bolla K. et al. Neural substrates of faulty decisionsmaking in abstinent marijuana users. Neuroimage 2005; 26: 480-92.
  • 6 Brody AL. et al. Smoking-induced ventral striatum dopamine release. Am J Psychiatry 2004; 161: 1211-8.
  • 7 Brody AL. et al. Attenuation of cue-induced cigarette carving and anterior cingulated cortex activation in bupropion -treated smokers: a preliminary study. Psychiatry Res 2004; 130: 269-81.
  • 8 Brody AL. Functional brain imaging of tobacco use and dependence. J Pychiatr Res 2006; 40: 404-18.
  • 9 Bunney E, Appel S, Brodie M. Cocaine potentiates ethanol-induced excitation of dopaminergic reward neurons in the ventral tegmental area. J Pharmacol Exp Ther 2000; 293: 383-9.
  • 10 Chang L, Haning W. Insights from recent positron emission tomography studies of drug abuse and dependence. Current opinion Psychiatry 2006; 19: 246-52.
  • 11 Connelly JF. Vigabatrin. Ann Pharmacother 1993; 27: 197-204.
  • 12 Dewey SL. et al. A pharmacologic strategy for the treatment of nicotine addiction. Synapse 1999; 31: 76-86.
  • 13 Dewey SL. et al. A novel strategy for the treatment of cocaine addiction. Synapse 1998; 30: 119-29.
  • 14 Dewey SL. et al. A pharmacologic strategy for the treatment of nicotine addiction. Synapse 1999; 31: 76-86.
  • 15 Eldreth D. et al. Abnormal activity in prefrontal brain regions in abstinent marijuana users. Neuroimage 2004; 23: 914-20.
  • 16 Fehr C. et al. Tiagabine does not attenuate alcoholinduced activation of the human reward system. Psychopharmacology 2007; 191: 975-83.
  • 17 Gerasimov MR. et al. Gamma-vinyl GABA inhibits methamphetamine, heroin, or ethanol-induced increases in nucleus accumbens dopamine. Synapse 1999; 34: 11-9.
  • 18 Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence of the involvement of the frontal cortex. Am J Psychiatry 2002; 159: 1642-52.
  • 19 Goldstein R. et al. Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex. Neuropsychologia 2004; 42: 1447-58.
  • 20 Heinz A. et al. Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 2004; 161: 1783-9.
  • 21 Heinz A. et al. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry 2005; 162: 1515-20.
  • 22 Heinz A. et al. Correlation of stable elevations in striatal μ-opioid receptor availability in detoxified alcoholic patients with alcohol craving: A positron emission tomography study using carbon 11-labeled carfentanil. Arch Gen Psychiatry 2005; 62: 57-64.
  • 23 Kalivas PW, Volkow N, Seamans J. Unmanageable motivation in addiction: a pathology in prefrontalaccumbens glutamate transmission. Neuron 2005; 45: 647-50.
  • 24 Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science 1997; 278: 52-8.
  • 25 Martinez D. et al. Cocaine dependence and D2 receptor availability in the functional subdivisions of the striatum: relationship with cocaine-seeking behaviour. Neuropsychopharmacology 2004; 29: 1190-202.
  • 26 Martinez D. et al. Positron emission tomography imaging of the serotonin transporter and 5-HT1A receptor in alcohol dependence. Biol Psychiatry 2009; 65: 175-80.
  • 27 Mavridis M, Besson MJ. Dopamine-opiate interaction in the regulation of neostriatal and pallidal neuronal activity as assessed by opioid precursor peptides and glutamate decarboxylase messenger RNA expression. Neuroscience 1992; 92: 945-66.
  • 28 Melichar J. et al. Using [11C]diprenorphine to image opioid receptor occupancy by methadone in opioid addiction: clinical and preclinical studies. J Pharmacol Exp Ther 2005; 312: 309-15.
  • 29 Schiffer WK. et al. Stereoselective inhibition of dopaminergic activity by gamma vinyl-GABA following a nicotine or cocaine challenge: a PET/microdialysis study. Life Sci 2000; 66: PL169-173.
  • 30 Schiffer WK, Marsteller D, Dewey SL. Sub-chronic low dose gamma-vinyl GABA (vigabatrin) inhibits cocaine-induced increases in nucleus accumbens dopamine. Psychopharmacology (Berl) 2003; 168: 339-43.
  • 31 Schreckenberger M. et al. Acute alcohol effects on neuronal and attentional processing: striatal reward system and inhibitory sensory interactions under acute ethanol challenge. Neuropsychopharmacoly 2004; 29: 1527-37.
  • 32 Schreckenberger M. et al. Opioid receptor PET reveals the psychobiological correlate of the human reward system. J Nucl Med 2008; 49: 1257-61.
  • 33 Stanford IM, Cooper AJ. Presynaptic mu and delta opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro. J Neurosci 1999; 19: 4796-803.
  • 34 Stapleton JM. et al. Nicotine reduces cerebral glucose utilization in humans. NIDA Res Monogr Washington: DHHS;; 1993
  • 35 Szabo Z. et al. Positron emission tomography imaging of the serotonin transporter in subjects with a history of alcoholism. Biol Psychiatry 2004; 55: 766-71.
  • 36 Tsukada H. et al. Comparative effects of methamphetamine and nicotine on the striatal [11C] raclopride binding in unanesthestized monkeys. Synapse 2002; 45: 207-12.
  • 37 Volkow ND. et al. Decreased striatal responsivity in detoxfied cocaine absusers. Nature 1997; 386: 830-3.
  • 38 Volkow ND. et al. Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J Neurosci 2003; 23: 11461-8.
  • 39 Volkow N. et al. Effects of alcohol detoxification on dopamine D2 receptors in alcoholics: a preliminary study. Psychiatry Res 2002; 116: 163-72.
  • 40 Volkow ND. et al. Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Research: Neuroimaging 1990; 35: 39-48.
  • 41 Volkow ND. et al. High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Arch Gen Psychiatry 2006; 63: 999-1008.
  • 42 Wang GJ. et al. Regional brain metabolism during alcohol intoxication. Alcohol Clin Exp Res 2000; 24: 822-9.
  • 43 Weerts EM. et al. Differences in delta- and mu-opioid receptor blockade measured by positron emission tomography in naltrexone-treated recently abstinent alcohol-dependent subjects. Neuropsychopharmacology 2008; 33: 653-65.
  • 44 Yim HJ. et al. Comparison to local and systemic ethanol effects on extracellular dopamine concentration in rat nucleus accumbens by microdialysis. Alcohol Clin Exp Res 1998; 22: 367-74.
  • 45 Yoder KK. et al. Dopamine D2 receptor availability is associated with subjective responses to alcohol. Alkohol Clin Exp Res 2005; 29: 965-70.