Osteologie 2017; 26(04): 229-235
DOI: 10.1055/s-0038-1628302
Osteomyelitis
Schattauer GmbH

Die septische Pseudarthrose

Septic non-union
C. Zeckey
1   Klinik für Allgemeine, Unfall- und Wiederherstellungschirurgie, Klinikum der Universität München, LMU München
,
W. Böcker
1   Klinik für Allgemeine, Unfall- und Wiederherstellungschirurgie, Klinikum der Universität München, LMU München
,
V. Herterich
1   Klinik für Allgemeine, Unfall- und Wiederherstellungschirurgie, Klinikum der Universität München, LMU München
› Author Affiliations
Further Information

Publication History

eingegangen: 11 October 2017

angenommen: 16 October 2017

Publication Date:
24 January 2018 (online)

Zusammenfassung

Die septische Pseudarthrose stellt weiterhin ein hochgradiges Problem in der muskulo -skelettalen Chirurgie dar. Das Zusammenspiel zwischen komplexen Behandlungsstrategien und dem entsprechend hohen Interventions-portfolio einerseits, andererseits aber ebenso durch die wechselnde und unterschiedliche Virulenz der Erreger sowie der variablen Immunkompetenz der betroffenen Patienten verkomplizieren die Situation erheblich. Neben den erheblichen medizinischen Problemen resultieren ebenso sozioökonomische Einschränkungen für die Betroffenen, was die Situation weiter verschärft. Unzureichende chirurgische Strategien resultieren in insuffizienten Ergebnissen mit Rezidiven oder Amputationen, die leider trotz ausführlichster Planung und chirurgischer Radikalität nie ganz ausgeschlossen werden können. Das prinzipielle Vorgehen bei septischen Pseudarthrosen besteht nach Diagnosestellung in der Resektion des in fizierten Knochenareals, der Isolation der entsprechenden Keime, der entsprechenden Antibiotikatherapie sowie aus anschließend folgenden rekonstruktiven Eingriffen nach Infektberuhigung. Kritisch ist hierbei das ,,dead-space“-Management nach ossärer Rekonstruktion durch Defektauffüllung unter Nutzung von Knochenzementen. Hier stehen verschiedene Optionen wie z. B. das Masquelet-Verfahren oder der Segmenttransport zur Verfügung. Der vorliegende Artikel soll Informationen über die Inzidenz der septischen Pseudarthrose, das typischerweise vorliegende Keimspektrum, die verfügbaren chirurgischen Behandlungsstrategien und einen Überblick über die aktuelle Literatur geben.

Summary

Septic non-union still portrays a high-grade problem in musculosceletal surgery. The interaction between complex therapeutic concepts and therefore high interventional portfolio on the one hand as well as changing and varying virulence of pathogens on the other furthermore complicate the situation substantially. To make things worse for patients, results are – besides the significant medical issue – also a series of socio-economic restrictions. Unsatisfying results with relapses and amputations, which can not be excluded in spite of extensive planning and extensive surgery arise from insufficiently performed surgical strategies. The general approach on septic non-unions after diagnosis consists of resection of infected bone area, isolation of the according pathogen, corresponding antiobiotics treatment as well as reconstructive surgical interventions afterwards. Especially dead-space management after osseous resection using bone cements turn out to be one of the critical phases. In case of bony defects, options can be Masquelet-Procedures or segmental bone transports inducing distraction osteogenesis. The present article aims to provide information on incidence of septic non-union, relevant pathogen ranges, surgical approaches as well as an overview on current literature.

 
  • Literatur

  • 1 Bhandari M. et al. Variability in the definition and perceived causes of delayed unions and nonunions: a cross-sectional, multinational survey of orthopaedic surgeons. J Bone Joint Surg Am 2012; 94 (15) e1091-e1096.
  • 2 Einhorn T. Breakout session 1: Definitions of fracture repair. Clin Orthop Relat Res 1998. Fracture Healing Enhancement 355 Supplement: S353, October; 1998
  • 3 Bishop JA. et al. Assessment of compromised fracture healing. J Am Acad Orthop Surg 2012; 20 (Suppl. 05) 273-282.
  • 4 Megas P. et al. The treatment of infected nonunion of the tibia following intramedullary nailing by the Ilizarov method. Injury 2010; 41 (Suppl. 03) 294-299.
  • 5 Martin B. Über experimentelle Pseudarthrosenbil-dung und die Bedeutung von Periost und Mark. Arch Klein Chir 1920; 114: 664.
  • 6 Malik MH, Harwood P, Diggle P, Khan SA. Factors affecting rates of infection and nonunion in intramedullary nailing. J Bone Joint Surg Br 2004; 86 (Suppl. 04) 556-560.
  • 7 Winquist RA, Hansen ST jun Clawson DK. Closed intramedullary nailing of femoral fractures. A report of five hundred and twenty cases. JBJS 2001; 83 (12) 1912.
  • 8 Probst J. Häufigkeit der Osteomyelitis nach Osteosynthesen. Chirurg 1977; 48 (Suppl. 01) J77.
  • 9 Muhammad Qaisar Shah et al.. Surgical site infection in orthopaedic implants and its common bacterie with their sensitivities to antibiotics in open reduction internal fixation. J Ayub Med Coll Abbottabad 2017; 29 (Suppl. 01) 50-53.
  • 10 Bonatus T, Olson SA, Lee S, Chapman MW. Nonreamed locking intramedullary nailing for open fractures of the tibia. Clin Orthop Relat Res 1997; 339: 58-64.
  • 11 Singer RW, Kellam JF. Open tibial diaphyseal fractures. Results of unreamed locked intramedullary nailing. Clin Orthop Relat Res 1995; 315 (315) 114-118.
  • 12 Whittle AP, Russell TA, Taylor JC, Lavelle DG. Treatment of open fractures of the tibial shaft with the use of interlocking nailing without reaming. J Bone Joint Surg Am 1992; 74 (Suppl. 08) 1162-1171.
  • 13 Grechenig S. et al. [Complication management for failed bone fracture healing: pseudarthrosis]. Chirurg 2015; 86 (10) 919-924.
  • 14 Miranda MA, Moon MS. Treatment strategy for nonunions and malunions. In: Stannard JP, Kregor PJ. eds. Surgical Treatment of Orthopaedic Trauma, Vol. 1. New York, NY: Thieme; 2007: 77-100.
  • 15 Calori GM. et al. Classification of non-union: need for a new scoring system?. Injury 2008; 39 (Suppl. 02) S59-S63.
  • 16 Chaudhary MM. Infected nonunion of tibia. Indian J Orthop 2017; 51: 256-268.
  • 17 Kinik H, Karaduman M. Cierny-Mader Type III chronic osteomyelitis: the results of patients treated with debridement, irrigation, vancomycin beads and systemic antibiotics. Int Orthop 2008; 32 (Suppl. 04) 551-558.
  • 18 Runkel M, Rommens PM. Pseudarthrosen. Unfallchirurg 2000; 103 (Suppl. 01) 51-63.
  • 19 Cierny 3rd G, Mader JT, Penninck JJ. A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res 2003; 414: 7-24.
  • 20 Kooistra BW. et al. The radiographic union scale in tibial fractures: reliability and validity. J Orthop Trauma 2010; 24 (Suppl. 01) S81-S86.
  • 21 Bhattacharyya T. et al. The accuracy of computed tomography for the diagnosis of tibial nonunion. J Bone Joint Surg Am 2006; 88 (Suppl. 04) 692-697.
  • 22 Gross T. et al. Current concepts in posttraumatic osteomyelitis: A diagnostic challenge with new imaging options. J Trauma 2002; 6 (52) 1210-1219.
  • 23 Chadayammuri V, Herbert B, Hao J. et al. Diagnostic accuracy of various modalities relative to open bone biopsy for detection of long bone post-traumatic osteomyelitis. European Journal of Orthopaedic Surgery & Traumatology 2017; 27 (Suppl. 07) 871-875.
  • 24 Choi HR. et al. Can implant retention be recommended for treatment of infected TKA?. Clin Orthop Relat Res 2011; 469 (Suppl. 04) 961-969.
  • 25 Brinker MR. et al. Metabolic and endocrine abnormalities in patients with nonunions. J Orthop Trauma 2007; 21 (Suppl. 08) 557-570.
  • 26 Cierny G. Infected tibial non-unions (1981–1995). The evolution of change. Clin Orthop Relat Res 1999; 360: 97-105.
  • 27 Lazzarini L, Mader JT, Calhoun JH. Osteomyelitis in long bones. J Bone Joint Surg Am 2004; 86-A (10): 2305-2318.
  • 28 Siegel HJ. et al. Limb salvage for chronic tibial osteomyelitis: an outcomes study. J Trauma 2000; 48 (Suppl. 03) 484-489.
  • 29 Evans RP, Nelson CL. Gentamicin-impregnated polymethylmethacrylate beads compared with systemic antibiotic therapy in the treatment of chronic osteomyelitis. Clin Orthop Relat Res 1993; 295 (295) 37-42.
  • 30 Fitzgerald RJ. Experimental osteomyelitis: description of a canine model and the role of depot administration of antibiotics in the prevention and treatment of sepsis. J Bone Joint Surg Am 1983; 65 (Suppl. 03) 371-380.
  • 31 Klemm K. Antibiotic bead chains. Clin Orthop Relat Res 1993; 295: 63-76.
  • 32 Springer BD. et al. Systemic safety of high-dose antibiotic-loaded cement spacers after resection of an infected total knee arthroplasty. Clin Orthop Relat Res 2004; 427: 47-51.
  • 33 Zalavras CG, Patzakis MJ, Holtom P. Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin Orthop Relat Res 2004; 427: 86-93.
  • 34 Rompe JD. et al. Extrakorporale Stoßwellenapplikation bei gestörter Knochenheilung. Unfallchirurg 1997; 100: 845-849.
  • 35 Chadayammuri V. Innovative strategies for the management of long bone infection: a review of the Masquelet technique. Patient Safety in Surgery 2015; 9 (Suppl. 01) 32.
  • 36 Ilizarov G. The treatment of pseudoarthrosis complicated by osteomyelitis and the elimination of purulent cavities. The transosseous osteosynthesis: theoretical and clinical aspects of the regeneration and growth of tissue. Berlin: Springer; 1992
  • 37 Josten C, Kremer M, Muhr G. Das Ilizarov-Verfahren bei Pseudarthrosen. Orthopäde 1996; 25 (Suppl. 05) 405-415.
  • 38 Burzyńska K. et al. The Use of 3D Printing Technology in the Ilizarov Method Treatment: Pilot Study. Adv Clin Exp Med 2016; 25 (Suppl. 06) 1157-1163.
  • 39 Weiland AJ. et al. Vascularized fibular grafts in the treatment of congenital pseudarthrosis of the tibia. J Bone Joint Surg Am 1990; 72 (Suppl. 05) 654-662.
  • 40 Berner A. et al. Autologous vs. allogenic mesenchymal progenitor cells for the reconstruction of critical sized segmental tibial bone defects in aged sheep. Acta Biomater 2013; 9 (Suppl. 08) 7874-7884.