Nervenheilkunde 2009; 28(05): 259-265
DOI: 10.1055/s-0038-1628627
Thema zum Schwerpunkt
Schattauer GmbH

Die Uhr im Hypothalamus

The clock in the hypothalamus
H.-W. Korf
1   Institut für Anatomie II, Dr. Senckenbergische Anatomie, Fachbereich Medizin, Goethe Universität Frankfurt am Main
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingegangen am: 19. Januar 2009

angenommen am: 27. Januar 2009

Publikationsdatum:
23. Januar 2018 (online)

Zusammenfassung

Der vorliegende Beitrag befasst sich auf der Grundlage tierexperimenteller Daten mit neurobiologischen Grundlagen des zirkadianen Systems und gibt einen kurzen Ausblick auf pathophysiologische Aspekte. Das zirkadiane System steuert zahlreiche rhythmische Körperfunktionen. Der Schrittmacher des zirkadianen Systems der Säugetiere und des Menschen ist der Nucleus suprachiasmaticus (SCN) des Hypothalamus, der durch transkriptional/translationale Rückkopplungsschleifen zwischen Uhrengenen und ihren Proteinprodukten einen endogenen Rhythmus mit einer Periodenlänge von ca. 24 Stunden generiert. Dieser endogene, zirkadiane Rhythmus wird durch Umweltreize, als Zeitgeber bezeichnet, mit dem Tag-Nacht-Rhythmus synchronisiert. Der wichtigste Zeitgeber ist der Hell-Dunkelwechsel, der von verschiedenen Photorezeptortypen in der Netzhaut wahrgenommen und über den retinohypothalamischen Trakt an den SCN übertragen wird. Die “zentrale” Uhr im SCN vermittelt ihre Signale über neuroendokrine und neuronale Mechanismen an “periphere” Oszillatoren, die sowohl im Zentralnervensystem als auch in der Körperperipherie lokalisiert sind. Mäuse mit molekulargenetischen Veränderungen des zirkadianen Systems zeigen Schlafstörungen, Veränderungen im Gehalt von Neurotransmittern und scheinen suchtanfällig zu sein. In Zukunft wird zu untersuchen sein, ob Polymorphismen der Uhrengene auch mit neuropsychiatrischen Veränderungen beim Menschen einhergehen.

Summary

This contribution reviews data from experimental animals on neurobiological aspects of the circadian system and provides a short outlook on pathophysiological consequences of molecular genetic alterations in the circadian system. In the center of the mammalian circadian system that controls a variety of rhythmic functions is the suprachiasmatic nucleus (SCN) of the hypothalamus. By transcriptional/translational feedback loops between clock genes and their protein products the SCN generates an endogenous rhythm with a period of approximately 24 hours. This circadian rhythm is entrained to the environment by external stimuli called zeitgebers. The most important zeitgeber is the photoperiod. In mammals photoperiodic stimuli are percveived in the retina by different types of photoreceptors and are transmitted to the SCN via the retino hypothalamic tract.The “central” circadian clock in the SCN conveys its signals via neuroendocrine and neuronal mechanisms to “peripheral” oscillators located either in the central nervous system or in other organs. Mice with mutations in clock genes display abnormalities in behavior and alterations in several neurotransmitter systems. These experimental data suggest that central nervous system diseases in man may be accompanied by clock gene polymorphisms.

 
  • Literatur

  • 1 Agellopoulos NC, Meissl H. Responses of neurones of the suprachiasmatic nucleus to retinal illumination under photopic and scotopic conditions. J Physiol 2000; 523: 211-222.
  • 2 Albrecht U. Invited review: regulation of mammalian circadian clock genes. J Appl Physiol 2002; 92: 1348-1355.
  • 3 Arendt J. Melatonin and the mammalian pineal gland. London: Chapman and Hall; 1995
  • 4 Aschoff J. Circadian clocks. Amsterdam: Elsevier/ North Holland; 1965
  • 5 Barnard AR, Nolan PM. When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PloS Genetics 2008; 04: 1-8.
  • 6 Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002; 295: 1070-1073.
  • 7 Dudley CA. et al. Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 2003; 301: 379-383.
  • 8 Dunlap JC, Loros JJ, DeCoursey PJ. Chronobiology: Biological Timekeeping. Sunderland, Massachusetts, USA: Sinauer Associates, Inc. Publishers; 2004
  • 9 Easton A, Arbuzova J, Turek FW. The circadian Clock mutation increases exploratory activity and escape-seeking behavior. Genes Brain Behav 2003; 02: 11-19.
  • 10 Foster RG, Hankins MW, Peirson SN. Light, photoreceptors, and circadian clocks. Methods Mol Biol 2007; 362: 3-28.
  • 11 Franken P. et al. The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity. J Neurosci 2000; 20: 617-625.
  • 12 Gau D. et al. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 2002; 34: 245-253.
  • 13 Gillette MU, Mitchell JW. Signaling in the suprachiasmatic nucleus: selectively responsive and integrative. Cell Tissue Res 2002; 309: 99-107.
  • 14 Ginty DD. et al. Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 1993; 260: 238-241.
  • 15 Green CB, Takahasi JS, Bass J. The meter of metabolism. Cell 2008; 134: 728-742.
  • 16 Hankins MW, Peirson SN, Foster RG. Melanopsin: an exciting photopigment. Trends Neurosci 2008; 31: 27-36.
  • 17 Hannibal J, Fahrenkrug J. Neuronal input pathways to the brain´s biological clock and their functional significance. Adv. Anat Embryol Cell Bio 2006; 182: 1-71.
  • 18 Hastings MH, Maywood ES, Reddy AB. Two decades of circadian time. J Neuroendocrinol 2008; 20: 812-819.
  • 19 Hastings M. et al. Expression of clock gene products in the suprachiasmatic nucleus in relation to circadian behaviour. Novartis Found Symp 2003; 253: 203-217.
  • 20 Hu WP. et al. Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep 2007; 247-256.
  • 21 Jin X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic nucleus. Cell 1999; 96: 57-68.
  • 22 Jin X. et al. Targeted disruption of the mouse Mel (1b) receptor. Mol Cell Biol 2003; 23: 1054-1060.
  • 23 Kalsbeek A, Buijs RM. Output pathways of the mammalian suprachiasmatic nucleus: coding circadian time by transmitter selection and specific targeting. Cell Tissue Res 2002; 309: 109-118.
  • 24 Klein DC, Moore RY, Reppert SM. Suprachiasmatic nucleus: the mind´s clock. New York: Oxford University Press; 1991
  • 25 Kopp M, Meissl H, Korf HW. The pituitary adenylate cyclase-activating polypeptide-induced phosphorylation of the transcription factor CREB (cAMP response element binding protein) in the rat suprachiasmatic nucleus is inhibited by melatonin. Neurosci Lett 1997; 227: 145-148.
  • 26 Kopp MDA. et al. Pituitary adenylate cyclase activating polypeptide and melatonin in the suprachiasmatic nucleus: effects on the calcium signal transduction cascade. J Neurosci 1999; 19: 206-219.
  • 27 Kopp MD. et al. The pituitary adenylate cyclase-activating polypeptide modulates glutaminergic calcium signaling: investigations on rat suprachiasmatic nucleus neurons. J Neurochem 2001; 79: 161-171.
  • 28 Korf HW. The innervation of the pineal gland. In: Unsicker K. (Hrsg). Autonomic-endocrine interactions. In: Burnstock G. (Hrsg). Handbook of the autonomic nervous system. Bd. Amsterdam: Harwood; 1996
  • 29 Korf HW, Schomerus C, Stehle JH. The pineal organ, its hormone melatonin, and the photoneuroendocrine system. Adv Anat Embryol Cell Biol 1998; 146: 1-100.
  • 30 Korf HW, Von Gall C. Mice, melatonin, and the circadian system. Mol Cell Endocrinol 2006; 252: 57-68.
  • 31 Laposky A. et al. Deletion of the mammalian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 2005; 28: 395-409.
  • 32 Levi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 2007; 593-628.
  • 33 Lincoln GA. Melatonin entrainment of circannual rhythms. Chronobiol Int 2006; 23: 301-306.
  • 34 Meyer-Bernstein EL. et al. Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine functions in golden hamsters. Endocrinology 1999; 140: 207-218.
  • 35 Moore RY, Speh JC, Leak RH. Suprachiasmatic nucleus organization. Cell Tissue Res 2002; 309: 89-98.
  • 36 Naylor E. et al. The circadian clock mutation alters slee homeostasis in the mouse. J Neurosci 2000; 20: 8138-8143.
  • 37 Okamura H, Yamaguchi S, Yagita K. Molecular machinery of the circadian clock in mammals. Cell Tissue Res 2002; 309: 47-56.
  • 38 Provencio I. et al. Melanopsin: an opsin in melanophores, brain, and eye. PNAS 1998; 95: 340-345.
  • 39 Provencio I. et al. A novel opsin in the inner retina. J Neurosci 2000; 20: 600-605.
  • 40 Reppert SM, Schwartz WJ, Uhl GR. Arginine vasopressin: a novel peptide rhythm in cerebrospinal fluid. Trends Neurosci 1987; 10: 76-80.
  • 41 Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 2002; 418: 935-941.
  • 42 Rollag MD, Berson DM, Provencio I. Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J Biol Rhythms 2003; 18: 227-234.
  • 43 Roybal K. et al. Mania-like behavior induced by disruption of CLOCK. PNAS 2007; 104: 6406-6411.
  • 44 Spanagel R. et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 2005; 11: 35-42.
  • 45 Stehle JH, von Gall C, Korf HW. Melatonin: a clockoutput, a clock-input. J Neuroendocrinol 2003; 15: 383-389.
  • 46 Toh KL. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrom. Science 2001; 291: 1040-1043.
  • 47 Tousson E, Meissl H. Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J Neurosc 2004; 24: 2983-2988.
  • 48 Von Gall C. et al. CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J Neurosci 1988; 18: 10389-10397.
  • 49 Von Gall C, Stehle JH, Weaver DR. Mammalian melatonin receptors: molecular biology and signal transduction. Cell Tissue Res 2002; 309: 151-162.
  • 50 Von Gall C. et al. Rhythmic gene expression in pituitary cells depends on temporally defined heterologous sensitization by the inhibitory neurohormone melatonin. Nat Neurosci 2002; 05: 234-238.
  • 51 Weaver DR. The roles of melatonin in development. Adv Exp Med Biol 1999; 460: 199-214.