Nervenheilkunde 2009; 28(05): 01-03
DOI: 10.1055/s-0038-1628641
Thema zum Schwerpunkt
Schattauer GmbH

Mitochondriale Störungen

G Gille
,
H Reichmann
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
23. Januar 2018 (online)

 

 
  • Literatur

  • 1 Anderson JJ. et al. No evidence for altered muscle mitochondrial function in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1993; 56: 477-480.
  • 2 Andres-Mateos E. et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. PNAS USA 2007; 104: 14807-14812.
  • 3 Barja G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenerg Biomembr 1999; 31: 347-366.
  • 4 Barroso N. et al. Respiratory chain enzyme activities in lymphocytes from untreated patients with Parkinson disease. Clin Chem 1993; 39: 667-669.
  • 5 Barsoum MJ. et al. Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 2006; 25: 3900-3911.
  • 6 Beilina A. et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. PNAS USA 2005; 102: 5703-5708.
  • 7 Bender A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38: 515-517.
  • 8 Bender A. et al. Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. J Neurol 2008; 255: 1231-1235.
  • 9 Benecke R, Strumper P, Weiss H. Electron transfer complexes I and IV of platelets are abnormal in Parkinson’s disease but normal in Parkinson-plus syndromes. Brain 1993; 116: 1451-1463.
  • 10 Bindoff LA. et al. Mitochondrial function in Parkinson’s disease. Lancet 1989; 02: 49.
  • 11 Blake CI. et al. Platelet mitochondrial respiratory chain function in Parkinson’s disease. Mov Disord 1997; 12: 3-8.
  • 12 Blin O. et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. J Neurol Sci 1994; 125: 95-101.
  • 13 Borland MK. et al. Relationships among molecular genetic and respiratory properties of Parkinson’s disease cybrid cells show similarities to Parkinson’s brain tissues. Biochim Biophys Acta 2009; 1792: 68-74.
  • 14 Bravi D. et al. Effect of aging and dopaminomimetic therapy on mitochondrial respiratory function in Parkinson’s disease. Mov Disord 1992; 07: 228-231.
  • 15 Brown MR, Sullivan PG, Geddes JW. Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria. J Biol Chem 2006; 281: 11658-11668.
  • 16 Canet-Aviles RM. et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. PNAS USA 2004; 101: 9103-9108.
  • 17 Cardellach F. et al. Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson’s disease. Neurology 1993; 43: 2258-2262.
  • 18 Cassarino DS. et al. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim Biophys Acta 1997; 1362: 77-86.
  • 19 Chan CS. et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 2007; 447: 1081-1086.
  • 20 Chen CM. et al. Increased oxidative damage in peripheral blood correlates with severity of Parkinson’s disease. Neurobiol Dis. 2008 Epub Dez 9..
  • 21 Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007; 130: 548-562.
  • 22 Chinopoulos C, Adam-Vizi V. Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson’s disease. J Neurochem 2001; 76: 302-306.
  • 23 Cole NB. et al. Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp Cell Res 2008; 314: 2076-2089.
  • 24 Cooper JM. et al. L-dihydroxyphenylalanine and complex I deficiency in Parkinson’s disease brain. Mov Disord 1995; 10: 295-297.
  • 25 Darios F. et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 2003; 12: 517-526.
  • 26 Davey GP, Peuchen S, Clark JB. Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem 1998; 273: 12753-12757.
  • 27 Davis GC. et al. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1979; 01: 249-254.
  • 28 Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 2007; 08: 870-879.
  • 29 Devi L. et al. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 2008; 283: 9089-9100.
  • 30 DiDonato S. et al. Respiratory chain and mitochondrial DNA in muscle and brain in Parkinson’s disease patients. Neurology 1993; 43: 2262-2268.
  • 31 Esteves AR. et al. Oxidative Stress involvement in alpha-synuclein oligomerization in Parkinsons disease cybrids. Antioxid Redox Signal. 2008 Epub Aug 21..
  • 32 Esteves AR. et al. Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion 2008; 08: 219-228.
  • 33 Exner N. et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 2007; 27: 12413-12418.
  • 34 Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. PNAS USA 2008; 105: 11364-11369.
  • 35 Gellerich FN. et al. The problem of interlab variation in methods for mitochondrial disease diagnosis: enzymatic measurement of respiratory chain complexes. Mitochondrion 2004; 04: 427-439.
  • 36 Gille G, Reichmann H. Ursachen des idiopathischen Parkinson-Syndroms – Stand 2005. Update on etiopathogenesis of idiopathic Parkinson’s syndrome. Akt Neurol 2005; 32: S75-S87.
  • 37 Gloeckner CJ. et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 2006; 15: 223-232.
  • 38 Gomez-Lazaro M. et al. 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells. Free Radic Biol Med 2008; 44: 1960-1969.
  • 39 Gu M. et al. Mitochondrial function, GSH and iron in neurodegeneration and Lewy body diseases. J Neurol Sci 1998; 158: 24-29.
  • 40 Haas RH. et al. Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol 1995; 37: 714-722.
  • 41 Hanagasi HA. et al. Mitochondrial complex I, II/III, and IV activities in familial and sporadic Parkinson’s disease. Int J Neurosci 2005; 115: 479-493.
  • 42 Haque ME. et al. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. PNAS USA 2008; 105: 1716-1721.
  • 43 Hashimoto M. et al. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med 2003; 04: 21-36.
  • 44 Hattori N. et al. . Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol 1991; 30: 563-571.
  • 45 Hoepken HH. et al. Parkinson patient fibroblasts show increased alpha-synuclein expression. Exp Neurol 2008; 212: 307-313.
  • 46 Hoepken HH. et al. Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis 2007; 25: 401-411.
  • 47 Iaccarino C. et al. Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet 2007; 16: 1319-1326.
  • 48 Isobe C. et al. Increase of oxidized/total coenzyme Q-10 ratio in cerebrospinal fluid in patients with Parkinson’s disease. J Clin Neurosci 2007; 14: 340-343.
  • 49 Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol 2003; 53: S26-S36.
  • 50 Jin J. et al. Quantitative proteomic analysis of mitochondrial proteins: relevance to Lewy body formation and Parkinson’s disease. Brain Res Mol Brain Res 2005; 134: 119-138.
  • 51 Keeney PM. et al. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 2006; 26: 5256-5264.
  • 52 Khusnutdinova E. et al. A mitochondrial etiology of neurodegenerative diseases: evidence from Parkinson’s disease. Ann N Y Acad Sci 2008; 1147: 1-20.
  • 53 Kim Y. et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 2008; 377: 975-980.
  • 54 Kingsbury AE. et al. Metabolic enzyme expression in dopaminergic neurons in Parkinson’s disease: an in situ hybridization study. Ann Neurol 2001; 50: 142-149.
  • 55 Klivenyi P. et al. Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 2006; 21: 541-548.
  • 56 Kraytsberg Y. et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 2006; 38: 518-520.
  • 57 Krige D. et al. Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 1992; 32: 782-788.
  • 58 Kuroda Y. et al. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 2006; 15: 883-895.
  • 59 Langston JW. et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219: 979-980.
  • 60 Lev N. et al. Oxidative insults induce DJ-1 upregulation and redistribution: Implications for neuroprotection. Neurotoxicology 2008; 29: 397-405.
  • 61 Luoma PT. et al. Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease. Neurology 2007; 69: 1152-1159.
  • 62 Mann VM. et al. Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 1992; 115: 333-342.
  • 63 Marongiu R. et al. Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux. J Neurochem. 2009 Epub Jan 24..
  • 64 Martin MA. et al. Respiratory-chain enzyme activities in isolated mitochondria of lymphocytes from untreated Parkinson’s disease patients. GrupoCentro de Trastornos del Movimiento. Neurology 1996; 46: 1343-1346.
  • 65 Martins LM. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 2002; 277: 439-444.
  • 66 Martins LM. et al. Binding specificity and regulation of the serine protease and PDZ domains of HtrA2/Omi. J Biol Chem 2003; 278: 49417-49427.
  • 67 Meuer K. et al. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ 2007; 14: 651-661.
  • 68 Miller GW. et al. Immunochemical analysis of dopamine transporter protein in Parkinson’s disease. Ann Neurol 1997; 41: 530-539.
  • 69 Mizuno Y. et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 1989; 163: 1450-1455.
  • 70 Mortiboys H. et al. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol 2008; 64: 555-565.
  • 71 Müftüoglu M. et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 2004; 19: 544-548.
  • 72 Nakagawa-Hattori Y. et al. Is Parkinson’s disease a mitochondrial disorder?. J Neurol Sci 1992; 107: 29-33.
  • 73 Narendra D. et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183: 795-803.
  • 74 Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 1985; 36: 2503-2508.
  • 75 Paisan-Ruiz C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004; 44: 595-600.
  • 76 Palacino JJ. et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004; 279: 18614-18622.
  • 77 Parihar MS. et al. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 2008; 65: 1272-1284.
  • 78 Parker Jr. WD, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989; 26: 719-723.
  • 79 Parker Jr. WD, Parks JK. Mitochondrial ND5 mutations in idiopathic Parkinson’s disease. Biochem Biophys Res Commun 2005; 326: 667-669.
  • 80 Parker Jr. WD, Parks JK, Swerdlow RH. Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res. 2008 1189. Epub 2007 Nov 1.: 215–218..
  • 81 Piccoli C. et al. Coexistence of Mutations in PINK1 and Mitochondrial DNA in Early Onset Parkinsonism. J Med Genet 2008; 45: 596-602.
  • 82 Piccoli C. et al. Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem Res 2008; 33: 2565-2574.
  • 83 Poole AC. et al. The PINK1/Parkin pathway regulates mitochondrial morphology. PNAS USA 2008; 105: 1638-1643.
  • 84 Pridgeon JW. et al. PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial Chaperone TRAP1. PLoS Biol 2007; 05: e172.
  • 85 Pyle A. et al. Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. Ann Neurol 2005; 57: 564-567.
  • 86 Reeve AK. et al. Nature of mitochondrial DNA deletions in substantia nigra neurons. Am J Hum Genet 2008; 82: 228-235.
  • 87 Reichmann H. et al. Unaltered respiratory chain enzyme activity and mitochondrial DNA in skeletal muscle from patients with idiopathic Parkinson’s syndrome. Eur Neurol 1994; 34: 263-267.
  • 88 Reichmann H, Riederer P. Biochemical analysis of respiratory chain enzymes in different brain regions of patients with Parkinson’s disease. BMBFT Symposium “Morbus Parkinson und andere Basalganglienerkrankungen”, Bad Kissingen. 1989
  • 89 Richter G. et al. Novel mitochondrial DNA mutations in Parkinson’s disease. J Neural Transm 2002; 109: 721-729.
  • 90 Schapira AH. et al. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989; 333: 1269.
  • 91 Schapira AH. et al. Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann Neurol 1998; 44: S89-S98.
  • 92 Schapira AH. et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 1990; 55: 2142-2145.
  • 93 Sheehan JP. et al. Altered calcium homeostasis in cells transformed by mitochondria from individuals with Parkinson’s disease. J Neurochem 1997; 68: 1221-1233.
  • 94 Shen J. Protein kinases linked to the pathogenesis of Parkinson’s disease. Neuron 2004; 44: 575-577.
  • 95 Simon DK. et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson’s disease. Neurobiol Aging 2004; 25: 71-81.
  • 96 Sipos I, Tretter L, Adam-Vizi V. Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J Neurochem 2003; 84: 112-118.
  • 97 Smigrodzki R, Parks J, Parker WD. High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol Aging 2004; 25: 1273-1281.
  • 98 Spees JL. et al. Mitochondrial transfer between cells can rescue aerobic respiration. PNAS USA 2006; 103: 1283-1288.
  • 99 Strauss KM. et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 2005; 14: 2099-2111.
  • 100 Swerdlow RH. et al. Matrilineal inheritance of complex I dysfunction in a multigenerational Parkinson’s disease family. Ann Neurol 1998; 44: 873-881.
  • 101 Swerdlow RH. et al. Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 1996; 40: 663-671.
  • 102 Trimmer PA. et al. Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem 2004; 88: 800-812.
  • 103 Trimmer PA. et al. Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol 2000; 162: 37-50.
  • 104 Um JW. et al. Molecular interaction between parkin and PINK1 in mammalian neuronal cells. Mol Cell Neurosci. 2009 Epub Jan 8..
  • 105 Valente EM. et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004; 304: 1158-1160.
  • 106 van der Walt JM. et al. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 2003; 72: 804-811.
  • 107 Verstreken P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005; 47: 365-378.
  • 108 Vila M, Ramonet D, Perier C. Mitochondrial alterations in Parkinson’s disease: new clues. J Neurochem 2008; 107: 317-328.
  • 109 Vives-Bauza C. et al. Sequence analysis of the entire mitochondrial genome in Parkinson’s disease. Biochem Biophys Res Commun 2002; 290: 1593-1601.
  • 110 Weihofen A. et al. Pink1 Forms a Multiprotein Complex with Miro and Milton, Linking Pink1 Function to Mitochondrial Trafficking (dagger). Biochemistry. 2009 Epub Jan 20..
  • 111 West AB. et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. PNAS USA 2005; 102: 16842-16847.
  • 112 Whitworth AJ. et al. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis Model Mech 2008; 01: 168-174.
  • 113 Wiedemann FR. et al. Detection of respiratory chain defects in cultivated skin fibroblasts and skeletal muscle of patients with Parkinson’s disease. Ann N Y Acad Sci 1999; 893: 426-429.
  • 114 Winkler-Stuck K. et al. Re-evaluation of the dysfunction of mitochondrial respiratory chain in skeletal muscle of patients with Parkinson’s disease. J Neural Transm 2005; 112: 499-518.
  • 115 Winkler-Stuck K. et al. Effect of coenzyme Q10 on the mitochondrial function of skin fibroblasts from Parkinson patients. J Neurol Sci 2004; 220: 41-48.
  • 116 Wood-Kaczmar A. et al. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE 2008; 03: e2455.
  • 117 Yang Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. PNAS USA 2006; 103: 10793-10798.
  • 118 Yang Y. et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. PNAS USA 2008; 105: 7070-7075.
  • 119 Yoshino H. et al. Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1992; 04: 27-34.
  • 120 Yun J. et al. Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo. J Neurosci 2008; 28: 14500-14510.
  • 121 Zhang L. et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 2005; 14: 2063-2073.
  • 122 Zhou C. et al. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A 2008; 105: 12022-12027.
  • 123 Zhou W. et al. The oxidation state of DJ-1 regulates its chaperone activity toward alpha-synuclein. J Mol Biol 2006; 356: 1036-1048.
  • 124 Zimprich A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004; 44: 601-607.