Kinder- und Jugendmedizin 2012; 12(03): 141-146
DOI: 10.1055/s-0038-1629191
Säuglinge
Schattauer GmbH

Säuglingsepilepsien

Grundlagen, epileptogene HirnfehlbildungenInfant Epilepsy − fundamentals and epileptogenic disorders of cortical formation
G. Kutschke
1   Allgemeine Pädiatrie und Neonatologie, Abteilung für Neuropädiatrie, Universitätsklinikum des Saarlandes, Homburg/Saar
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingereicht am:23. April 2012

angenommen am:25. April 2012

Publikationsdatum:
31. Januar 2018 (online)

Zusammenfassung

Epilepsien des ersten Lebensjahres sind in ihrer Entstehung in besonderer Weise (geprägt von Einflüssen) abhängig von einer tiefgreifenden prä- und postnatalen strukturellen sowie funktionellen Reifung des Gehirns. Im Gegensatz zur späteren Entwicklung disponiert diese zu einer deutlich (höheren) größeren Vulnerabilität gegenüber einer Vielzahl potenziell epileptogener Noxen. Abhängig von Zeitpunkt, Art und Ausmaß der läsionellen Einwirkung können diese Noxen zu Epilepsien mit sehr unterschiedlichem klinischem Phänotyp führen, der häufig von einer komplexen, motorischen und kognitiven Entwicklungsstö-rung begleitet wird. Durch die in letzter Zeit rasch zunehmenden Fortschritte der molekularbiologischen Grundlagenforschung ist deutlich geworden, dass ein erheblicher Anteil ätiologisch ungeklärter Epilepsien des Säuglingsalters genetisch bedingt ist. Der geneti-sche Defekt kann dabei entweder zu einer primären Störung zellulärer bzw. subzellulärer Basismechanismen führen oder diese sekundär durch einen Stoffwechseldefekt oder eine kortikale Malformation hervorrufen. Kortikale Malformationen führen häufig bereits in den ersten Lebensmonaten zu einer Epilepsie, die oft nur schwer medikamentös behandelbar ist und bei erwiesener Pharmakoresistenz die Frage nach der Möglichkeit einer epilepsiechirurgischen Therapie stellt. In späteren Beiträgen soll über genetische Störungen epileptischer Basis-mechanismen, metabolische Ursachen von Säuglingsepilepsien und über die häufigsten Epilepsie-Syndrome des ersten Lebensjahres berichtet werden.

Summary

The genesis of epilepsies in the first year of life is characterized by influences on the profound structural and functional pre- and postnatal development of the brain. As opposed to a later development there is a markedly increased vulnerability against numerous potentially epileptogenic noxae, particularly hypoxic-ischemic and consequential inflammatory or pathogenic origin. Depending on time, type and extent of the lesion, these noxae lead to epilepsies with a clinical phenotype of varying severity and are accompanied by diverse, particularly physical and cognitive developmental disorders. Due to the rapid progress in molecular biological fundamental research an increasing number of epilepsies in infants with so far unexplained etiology is perceived as primarily genetic. The genetic defect can directly lead to a dysfunction of cellular and subcellular basic mechanisms, or cause a dysfunction via a metabolic defect or as a result of cortical malformation. We will present a short survey of epileptic basic mechanisms, then go on to describe congenital malformations of the cerebral cortex that are highly likely to lead to epilepsy within the first months after birth and demand high standards of medical treatment – and, in case of proven pharmacoresistance, are treated surgically. In further articles we will talk about the genetic and metabolic reasons as well as diagnostics, therapy and prognosis of the clinically relevant epilepsy syndromes of the first year of life.

 
  • Literatur

  • 1 Berg AT, Berkovic SF, Brodie MJ. et al Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 2010; 51: 676-685.
  • 2 Berg AT, Shinnar S, Levy S. et al Early development of intractable epilepsy in children: A porspective study. Neurology 2001; 56: 1445-1452.
  • 3 Verity CM, Ross EM, Golding J. Epilepsy in the first ten years of life: findings of the child health and education study. British Medical Journal 1992; 305: 857-861.
  • 4 Freitag ChM, May TW, Pfäfflin M. et al Incidence of Epilepsies and Epileptic Syndromes in Children and Adolescents: A Population-Based Prospective Study in Germany. Epilepsia 2001; 42: 979-985.
  • 5 Durá-Travé T, Yoldi-Petri ME, Gallinas-Vicoriano F. Incidence of epilepsies and epileptic syndromes among children in Navarre, Spain: 2002 through 2005. J Child Neurol 2008; 23: 878-882.
  • 6 Stafstrom CE. Epilepsy: a review of selected clinical syndromes and advances in basic science. Journal of Cerebral Bloodflow & Metabolism 2006; 26: 983-1004.
  • 7 Köhling R. Pathophysiologie der Epilepsie. Klinische Neurophysiologie 2006; 37: 216-224.
  • 8 Tasker JG, Hoffmann NW, Kim YI. et al Electrical properties of neocortical neurons in slices from children with intractable epilepsy. J Neurophysiol 1996; 75: 931-939.
  • 9 Singh N, Charlier C, Stauffer D. et al A novel potassium channel gen, KCNQ2, is mutated in an inherited epilepsy of newborns. Nature Genet 1998; 18: 25-29.
  • 10 Poolos NP. The yin and yang of the H-channel and its role in epilepsy. Epilepsy Curr 2004; 4: 3-6.
  • 11 Rogawski MA. K-channels and the molecular pathogenesis of epilepsy: implications for therapy. Trends in Neurosci 2000; 23: 393-398.
  • 12 Roper SN, King MA, Abraham LA, Boillot MA. Disinhibited in vitro neocortical neocortical slices containing experimentally induced cortical dysplasia demonstrate hyperexcitability. Epilepsy Res 1997; 26: 443-449.
  • 13 Buckmaster PS, Zhang GF, Yamawaki R. Axon sprouting in a model of temporal lobe epilepsy creates a predominantly excitatory feedback circuit. J Neurosci 2002; 22: 6650-6658.
  • 14 Andre VM, Flores-Hernandez J, Cepeda C. et al NMDA receptor alterations in neurons from pediatric cortical dysplasia tissue. Cerebral Cortex 2004; 14: 634-646.
  • 15 Ben-Ari Y. Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 2002; 3: 728-739.
  • 16 Jacob M, Weber YG, Lerche H. Benigne familiar Anfälle des Neugeborenen- und Säuglingsalters. Zeitschr Epil 2008; 21: 142-148.
  • 17 Holmes GL. Epilepsy in the developing brain: lessons from the laboratory and clinic. Epilepsia 1997; 38: 12-30.
  • 18 Monyer H. Seeburg PH, Wisden W. Glutamat-operated channels: developmentally early mature forms arise by alternative splicing. Neuron 1991; 6: 799-810.
  • 19 Hagland MM, Schwartzkroin PA. Role of Na-K pump potassium regulation an IPSPs in seizures and spreading depression in immature rabbit hippocampal slices. J Neurophysiol 1990; 63: 225-239.
  • 20 Sillanpää M. Epilepsy in children: prevalence, disability, and handicap. Epilepsia 1992; 33: 444-449.
  • 21 Kramer MD. Epilepsy in the First Year of Life: A Review. J Child Neurol 1999; 14: 485-489.
  • 22 Leventer RJ, Guerrini R, Dobyns WB. Malformations of cortical development and epilepsy. Dialogues Clin Neurosci 2008; 10: 47-62.
  • 23 Andrade DM. Genetic basis in epilepsies caused by malformations of cortical development and in those with structurally normal brain. Hum Genet 2009; 126: 173-193.
  • 24 Barkociv AJ, Guerrini R, Kuzniecky RI. et al A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012 Mar 16 [Epub ahead of print]
  • 25 Guzzetta F, Battaglia D, Di Rocco C, Caldarelli M. Symptomatic epilepsy in children with poren - cephalic cysts secondary to perinatal middle cerebral artery occlusion. Childs Nerv System 2006; 22: 922-933.
  • 26 Malinger G, Lev D, Lerman-Sagie T. Imaging of Fetal Cytomegalovirus Infection. Fetal Diagn Ther 2011; 29: 117-126.
  • 27 Krsek P, Jahovdova A, Maton B. et al Low-grade Focal Cortical Dysplasia is associated with prenatal an perinatal brain injury. Epilepsia 2010; 51: 2440-2448.
  • 28 Manzini MC, Walsh CA. What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr Opin Genet Dev 2011; 21: 333-339.
  • 29 Mathern GW, Cepeda C, Hurst RS. Neurons recorded from pediatric epilepsy surgery patients with cortical dysplasia. Epilepsia 2000; 41: 162-167.
  • 30 Sisodya SM. Malformations of cortical development: burdens and insights from important causes of human epilepsy. Lancet Neurology 2004; 3: 29-37.
  • 31 Alvarez MR, Garcia-Diaz L, Marquez J. et al Hemimegalencephaly: Prenatal Diagnosis and Outcome. Fetal Diagn Ther 2011; 30: 234-238.
  • 32 Jacobs KM, Prince DA. Excitatory and inhibitory postsynaptic currents in a rat model of epileptogenic microgyria. J Neurophysiol 2005; 93: 687-696.
  • 33 Cukiert A, Cukiert CM, Argentoni M. et al Outcome after hemispherectomy in hemiplegic adult patients with refractory epilepsy associated with early middle cerebral artery infarcts. Epilepsia 2009; 50: 1381-1384.
  • 34 Salamon N, Andres M, Chute DJ. et al Contralateral hemimicrencephaly and clinical-pathological correlations in children with hemimegalencephaly. Brain 2006; 129: 352-365.
  • 35 Caraballo R, Bartuluchi M, Cersosimo R. et al Hemispherectomy in pediatric patients with epilepsy: a study of 45 cases with special emphasis on epileptic syndromes. Childs Nerv Syst 2011; 27: 2131-2136.
  • 36 Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med 2006; 355: 1345-1356.
  • 37 Cepeda C, Andre VM, Vinters HV. et al Are cytomegalic neurons and ballon cells generators of epileptic activity in pediatric cortical dysplasia?. Epilepsia 2005; 46 (Suppl. 05) (Suppl) 82-88.
  • 38 Koepp MJ, Woermann FG. Imaging structure and function in refractory focal epilepsy. Lancet Neurology 2005; 4: 42-53.
  • 39 Woermann R, Vollmar C. Clinical MRI in children and adults with focal epilepsy: A critical review. Epilepsy & Behavior 2009; 15: 40-49.