Semin Liver Dis 2019; 39(01): 026-042
DOI: 10.1055/s-0038-1676806
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Inflammation and Liver Cancer: Molecular Mechanisms and Therapeutic Targets

Yoon Mee Yang
1   Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
,
So Yeon Kim
1   Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
,
Ekihiro Seki
1   Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
› Author Affiliations
Funding This work was supported in part by the National Institutes of Health (NIH) (R01DK085252, R21AA025841, T32HL134637), the American Liver Foundation (ALF; Irwin M. Arias, MD, Postdoctoral Research Fellowship), and Cedars-Sinai Medical Center (Winnick Research Award, Samuel Oschin Comprehensive Cancer Institute-Center for Integrated Research in Cancer and Lifestyle Award).
Further Information

Publication History

Publication Date:
17 January 2019 (online)

Abstract

Hepatocellular carcinoma (HCC) is associated with chronic inflammation and fibrosis arising from different etiologies, including hepatitis B and C and alcoholic and nonalcoholic fatty liver diseases. The inflammatory cytokines tumor necrosis factor-α and interleukin-6 and their downstream targets nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and signal transducer and activator of transcription 3 drive inflammation-associated HCC. Further, while adaptive immunity promotes immune surveillance to eradicate early HCC, adaptive immune cells, such as CD8+ T cells, Th17 cells, and B cells, can also stimulate HCC development. Thus, the role of the hepatic immune system in HCC development is a highly complex topic. This review highlights the role of cytokine signals, NF-κB, JNK, innate and adaptive immunity, and hepatic stellate cells in HCC and discusses whether these pathways could be therapeutic targets. The authors will also discuss cholangiocarcinoma and liver metastasis because biliary inflammation and tumor-associated stroma are essential for cholangiocarcinoma development and because primary tumor-derived inflammatory mediators promote the formation of a “premetastasis niche” in the liver.

 
  • References

  • 1 Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2018. CA Cancer J Clin 2018; 68 (01) 7-30
  • 2 El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007; 132 (07) 2557-2576
  • 3 Massarweh NN, El-Serag HB. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Contr 2017; 24 (03) 1073274817729245
  • 4 Michelotti GA, Machado MV, Diehl AM. NAFLD, NASH and liver cancer. Nat Rev Gastroenterol Hepatol 2013; 10 (11) 656-665
  • 5 Heymann F, Tacke F. Immunology in the liver--from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016; 13 (02) 88-110
  • 6 Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology 2008; 47 (02) 729-736
  • 7 Yamada K, Kumagai S, Kubo S, Endo G. Chemical exposure levels in printing and coating workers with cholangiocarcinoma (third report). J Occup Health 2015; 57 (06) 565-571
  • 8 Hamady ZZ, Rees M, Welsh FK. , et al. Fatty liver disease as a predictor of local recurrence following resection of colorectal liver metastases. Br J Surg 2013; 100 (06) 820-826
  • 9 Kondo T, Okabayashi K, Hasegawa H, Tsuruta M, Shigeta K, Kitagawa Y. The impact of hepatic fibrosis on the incidence of liver metastasis from colorectal cancer. Br J Cancer 2016; 115 (01) 34-39
  • 10 Costa-Silva B, Aiello NM, Ocean AJ. , et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015; 17 (06) 816-826
  • 11 Hoshino A, Costa-Silva B, Shen TL. , et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527 (7578): 329-335
  • 12 Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: epidemiology, etiology, and carcinogenesis. J Carcinog 2017; 16: 1
  • 13 Ringelhan M, Pfister D, O'Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol 2018; 19 (03) 222-232
  • 14 Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018; 18 (05) 309-324
  • 15 Park EJ, Lee JH, Yu GY. , et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010; 140 (02) 197-208
  • 16 Haybaeck J, Zeller N, Wolf MJ. , et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 2009; 16 (04) 295-308
  • 17 Song IJ, Yang YM, Inokuchi-Shimizu S, Roh YS, Yang L, Seki E. The contribution of toll-like receptor signaling to the development of liver fibrosis and cancer in hepatocyte-specific TAK1-deleted mice. Int J Cancer 2018; 142 (01) 81-91
  • 18 Pikarsky E, Porat RM, Stein I. , et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431 (7007): 461-466
  • 19 Nikolaou K, Tsagaratou A, Eftychi C, Kollias G, Mosialos G, Talianidis I. Inactivation of the deubiquitinase CYLD in hepatocytes causes apoptosis, inflammation, fibrosis, and cancer. Cancer Cell 2012; 21 (06) 738-750
  • 20 Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121 (07) 977-990
  • 21 Luedde T, Beraza N, Kotsikoris V. , et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 2007; 11 (02) 119-132
  • 22 Inokuchi S, Aoyama T, Miura K. , et al. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci U S A 2010; 107 (02) 844-849
  • 23 Bettermann K, Vucur M, Haybaeck J. , et al. TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. Cancer Cell 2010; 17 (05) 481-496
  • 24 Vucur M, Reisinger F, Gautheron J. , et al. RIP3 inhibits inflammatory hepatocarcinogenesis but promotes cholestasis by controlling caspase-8- and JNK-dependent compensatory cell proliferation. Cell Reports 2013; 4 (04) 776-790
  • 25 Liedtke C, Bangen JM, Freimuth J. , et al. Loss of caspase-8 protects mice against inflammation-related hepatocarcinogenesis but induces non-apoptotic liver injury. Gastroenterology 2011; 141 (06) 2176-2187
  • 26 Kondylis V, Polykratis A, Ehlken H. , et al. NEMO prevents steatohepatitis and hepatocellular carcinoma by inhibiting RIPK1 kinase activity-mediated hepatocyte apoptosis. Cancer Cell 2015; 28 (05) 582-598
  • 27 Schneider AT, Gautheron J, Feoktistova M. , et al. RIPK1 suppresses a TRAF2-dependent pathway to liver cancer. Cancer Cell 2017; 31 (01) 94-109
  • 28 Sakurai T, Maeda S, Chang L, Karin M. Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci U S A 2006; 103 (28) 10544-10551
  • 29 Hui L, Zatloukal K, Scheuch H, Stepniak E, Wagner EF. Proliferation of human HCC cells and chemically induced mouse liver cancers requires JNK1-dependent p21 downregulation. J Clin Invest 2008; 118 (12) 3943-3953
  • 30 Das M, Garlick DS, Greiner DL, Davis RJ. The role of JNK in the development of hepatocellular carcinoma. Genes Dev 2011; 25 (06) 634-645
  • 31 Cubero FJ, Zhao G, Nevzorova YA. , et al. Haematopoietic cell-derived Jnk1 is crucial for chronic inflammation and carcinogenesis in an experimental model of liver injury. J Hepatol 2015; 62 (01) 140-149
  • 32 Aleksandrova K, Boeing H, Nöthlings U. , et al. Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer. Hepatology 2014; 60 (03) 858-871
  • 33 Naugler WE, Sakurai T, Kim S. , et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317 (5834): 121-124
  • 34 He G, Yu GY, Temkin V. , et al. Hepatocyte IKKbeta/NF-kappa B inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 2010; 17 (03) 286-297
  • 35 Wang H, Lafdil F, Wang L. , et al. Hepatoprotective versus oncogenic functions of STAT3 in liver tumorigenesis. Am J Pathol 2011; 179 (02) 714-724
  • 36 He G, Dhar D, Nakagawa H. , et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 2013; 155 (02) 384-396
  • 37 Jiang R, Tan Z, Deng L. , et al. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology 2011; 54 (03) 900-909
  • 38 Hu Z, Luo D, Wang D, Ma L, Zhao Y, Li L. IL-17 activates the IL-6/STAT3 signal pathway in the proliferation of hepatitis B virus-related hepatocellular carcinoma. Cell Physiol Biochem 2017; 43 (06) 2379-2390
  • 39 Gu FM, Li QL, Gao Q. , et al. IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma. Mol Cancer 2011; 10: 150
  • 40 Gao S, Li A, Liu F. , et al. NCOA5 haploinsufficiency results in glucose intolerance and subsequent hepatocellular carcinoma. Cancer Cell 2013; 24 (06) 725-737
  • 41 Ma WL, Hsu CL, Wu MH. , et al. Androgen receptor is a new potential therapeutic target for the treatment of hepatocellular carcinoma. Gastroenterology 2008; 135 (03) 947-955 , 955.e1–955.e5
  • 42 Wu MH, Ma WL, Hsu CL. , et al. Androgen receptor promotes hepatitis B virus-induced hepatocarcinogenesis through modulation of hepatitis B virus RNA transcription. Sci Transl Med 2010; 2 (32) 32ra35
  • 43 Roh YS, Seki E. Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol 2013; 28 (Suppl. 01) 38-42
  • 44 Eiró N, Altadill A, Juárez LM. , et al. Toll-like receptors 3, 4 and 9 in hepatocellular carcinoma: Relationship with clinicopathological characteristics and prognosis. Hepatol Res 2014; 44 (07) 769-778
  • 45 Dapito DH, Mencin A, Gwak GY. , et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012; 21 (04) 504-516
  • 46 Miura K, Ishioka M, Minami S. , et al. Toll-like receptor 4 on macrophage promotes the development of steatohepatitis-related hepatocellular carcinoma in mice. J Biol Chem 2016; 291 (22) 11504-11517
  • 47 Benbow JH, Thompson KJ, Cope HL. , et al. Diet-induced obesity enhances progression of hepatocellular carcinoma through tenascin-C/Toll-like receptor 4 signaling. Am J Pathol 2016; 186 (01) 145-158
  • 48 Hernandez C, Huebener P, Pradere JP, Antoine DJ, Friedman RA, Schwabe RF. HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest 2018; 128 (06) 2436-2451
  • 49 Liu Y, Yan W, Tohme S. , et al. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9. J Hepatol 2015; 63 (01) 114-121
  • 50 Tohme S, Yazdani HO, Liu Y. , et al. Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction. Hepatology 2017; 66 (01) 182-197
  • 51 Yan W, Chang Y, Liang X. , et al. High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 2012; 55 (06) 1863-1875
  • 52 Chen R, Zhu S, Fan XG. , et al. High mobility group protein B1 controls liver cancer initiation through yes-associated protein -dependent aerobic glycolysis. Hepatology 2018; 67 (05) 1823-1841
  • 53 Khambu B, Huda N, Chen X. , et al. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest 2018; 128 (06) 2419-2435
  • 54 Sakurai T, Yada N, Watanabe T. , et al. Cold-inducible RNA-binding protein promotes the development of liver cancer. Cancer Sci 2015; 106 (04) 352-358
  • 55 Lujan DA, Ochoa JL, Hartley RS. Cold-inducible RNA binding protein in cancer and inflammation. Wiley Interdiscip Rev RNA 2018;9(2)
  • 56 Machida K, Tsukamoto H, Mkrtchyan H. , et al. Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog. Proc Natl Acad Sci U S A 2009; 106 (05) 1548-1553
  • 57 Uthaya Kumar DB, Chen CL, Liu JC. , et al. TLR4 signaling via NANOG cooperates with STAT3 to activate Twist1 and promote formation of tumor-initiating stem-like cells in livers of mice. Gastroenterology 2016; 150 (03) 707-719
  • 58 Chen CL, Tsukamoto H, Liu JC. , et al. Reciprocal regulation by TLR4 and TGF-β in tumor-initiating stem-like cells. J Clin Invest 2013; 123 (07) 2832-2849
  • 59 Chen CL, Uthaya Kumar DB, Punj V. , et al. NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab 2016; 23 (01) 206-219
  • 60 Yoshimoto S, Loo TM, Atarashi K. , et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499 (7456): 97-101
  • 61 Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol 2017; 14 (09) 527-539
  • 62 Ma C, Han M, Heinrich B. , et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018; 360 (6391): eaan5931
  • 63 Ma C, Kesarwala AH, Eggert T. , et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016; 531 (7593): 253-257
  • 64 Broz ML, Binnewies M, Boldajipour B. , et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 2014; 26 (05) 638-652
  • 65 Gomes AL, Teijeiro A, Burén S. , et al. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 2016; 30 (01) 161-175
  • 66 Endig J, Buitrago-Molina LE, Marhenke S. , et al. Dual role of the adaptive immune system in liver injury and hepatocellular carcinoma development. Cancer Cell 2016; 30 (02) 308-323
  • 67 Garnelo M, Tan A, Her Z. , et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma. Gut 2017; 66 (02) 342-351
  • 68 Wang K, Nie X, Rong Z. , et al. B lymphocytes repress hepatic tumorigenesis but not development in Hras12V transgenic mice. Int J Cancer 2017; 141 (06) 1201-1214
  • 69 Faggioli F, Palagano E, Di Tommaso L. , et al. B lymphocytes limit senescence-driven fibrosis resolution and favor hepatocarcinogenesis in mouse liver injury. Hepatology 2018; 67 (05) 1970-1985
  • 70 Shalapour S, Lin XJ, Bastian IN. , et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 2017; 551 (7680): 340-345
  • 71 Finkin S, Yuan D, Stein I. , et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol 2015; 16 (12) 1235-1244
  • 72 Zhao W, Zhang L, Yin Z. , et al. Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer 2011; 129 (11) 2651-2661
  • 73 Amann T, Bataille F, Spruss T. , et al. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 2009; 100 (04) 646-653
  • 74 Ji J, Eggert T, Budhu A. , et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology 2015; 62 (02) 481-495
  • 75 Zhao W, Su W, Kuang P. , et al. The role of hepatic stellate cells in the regulation of T-cell function and the promotion of hepatocellular carcinoma. Int J Oncol 2012; 41 (02) 457-464
  • 76 Zhao W, Zhang L, Xu Y. , et al. Hepatic stellate cells promote tumor progression by enhancement of immunosuppressive cells in an orthotopic liver tumor mouse model. Lab Invest 2014; 94 (02) 182-191
  • 77 Höchst B, Schildberg FA, Sauerborn P. , et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol 2013; 59 (03) 528-535
  • 78 Xu Y, Zhao W, Xu J. , et al. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget 2016; 7 (08) 8866-8878
  • 79 Schupp J, Krebs FK, Zimmer N, Trzeciak E, Schuppan D, Tuettenberg A. Targeting myeloid cells in the tumor sustaining microenvironment. Cell Immunol 2017; S0008-8749(17)30190-9
  • 80 Aras S, Zaidi MR. TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer 2017; 117 (11) 1583-1591
  • 81 Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 2010; 10 (01) 51-57
  • 82 Schmitt CA, Fridman JS, Yang M. , et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 2002; 109 (03) 335-346
  • 83 Lujambio A, Akkari L, Simon J. , et al. Non-cell-autonomous tumor suppression by p53. Cell 2013; 153 (02) 449-460
  • 84 Lan YY, Londoño D, Bouley R, Rooney MS, Hacohen N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Reports 2014; 9 (01) 180-192
  • 85 Takahashi A, Loo TM, Okada R. , et al. Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat Commun 2018; 9 (01) 1249
  • 86 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116 (02) 281-297
  • 87 Budhu A, Jia HL, Forgues M. , et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 2008; 47 (03) 897-907
  • 88 Murakami Y, Yasuda T, Saigo K. , et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006; 25 (17) 2537-2545
  • 89 Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013; 10 (09) 542-552
  • 90 Ding J, Huang S, Wang Y. , et al. Genome-wide screening reveals that miR-195 targets the TNF-α/NF-κB pathway by down-regulating IκB kinase alpha and TAB3 in hepatocellular carcinoma. Hepatology 2013; 58 (02) 654-666
  • 91 Negrini M, Ferracin M, Sabbioni S, Croce CM. MicroRNAs in human cancer: from research to therapy. J Cell Sci 2007; 120 (Pt 11): 1833-1840
  • 92 Ding Y, Yan JL, Fang AN, Zhou WF, Huang L. Circulating miRNAs as novel diagnostic biomarkers in hepatocellular carcinoma detection: a meta-analysis based on 24 articles. Oncotarget 2017; 8 (39) 66402-66413
  • 93 Xu J, Wu C, Che X. , et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog 2011; 50 (02) 136-142
  • 94 Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol 2002; 12 (09) 735-739
  • 95 Hou J, Lin L, Zhou W. , et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell 2011; 19 (02) 232-243
  • 96 Gramantieri L, Ferracin M, Fornari F. , et al. Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 2007; 67 (13) 6092-6099
  • 97 Coulouarn C, Factor VM, Andersen JB, Durkin ME, Thorgeirsson SS. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 2009; 28 (40) 3526-3536
  • 98 Tsai WC, Hsu PW, Lai TC. , et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 2009; 49 (05) 1571-1582
  • 99 Zeng C, Wang R, Li D. , et al. A novel GSK-3 beta-C/EBP alpha-miR-122-insulin-like growth factor 1 receptor regulatory circuitry in human hepatocellular carcinoma. Hepatology 2010; 52 (05) 1702-1712
  • 100 Tsai WC, Hsu SD, Hsu CS. , et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012; 122 (08) 2884-2897
  • 101 Hsu SH, Wang B, Kota J. , et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 2012; 122 (08) 2871-2883
  • 102 Xu H, He JH, Xiao ZD. , et al. Liver-enriched transcription factors regulate microRNA-122 that targets CUTL1 during liver development. Hepatology 2010; 52 (04) 1431-1442
  • 103 Luna JM, Barajas JM, Teng KY. , et al. Argonaute CLIP defines a deregulated miR-122-bound transcriptome that correlates with patient survival in human liver cancer. Mol Cell 2017; 67 (03) 400-410.e7
  • 104 Li C, Deng M, Hu J. , et al. Chronic inflammation contributes to the development of hepatocellular carcinoma by decreasing miR-122 levels. Oncotarget 2016; 7 (13) 17021-17034
  • 105 Wang B, Hsu SH, Wang X. , et al. Reciprocal regulation of microRNA-122 and c-Myc in hepatocellular cancer: role of E2F1 and transcription factor dimerization partner 2. Hepatology 2014; 59 (02) 555-566
  • 106 Wang D, Sun X, Wei Y. , et al. Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Res 2018; 46 (04) 2012-2029
  • 107 Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133 (02) 647-658
  • 108 Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog 2013; 52 (04) 297-303
  • 109 Guo X, Lv X, Lv X, Ma Y, Chen L, Chen Y. Circulating miR-21 serves as a serum biomarker for hepatocellular carcinoma and correlated with distant metastasis. Oncotarget 2017; 8 (27) 44050-44058
  • 110 Wang WY, Zhang HF, Wang L. , et al. miR-21 expression predicts prognosis in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2014; 38 (06) 715-719
  • 111 Huang CS, Yu W, Cui H. , et al. Increased expression of miR-21 predicts poor prognosis in patients with hepatocellular carcinoma. Int J Clin Exp Pathol 2015; 8 (06) 7234-7238
  • 112 Koenig AB, Barajas JM, Guerrero MJ, Ghoshal K. A comprehensive analysis of argonaute-CLIP data identifies novel, conserved and species-specific targets of miR-21 in human liver and hepatocellular carcinoma. Int J Mol Sci 2018; 19 (03) E851
  • 113 Wagenaar TR, Zabludoff S, Ahn SM. , et al. Anti-miR-21 suppresses hepatocellular carcinoma growth via broad transcriptional network deregulation. Mol Cancer Res 2015; 13 (06) 1009-1021
  • 114 Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 2010; 39 (04) 493-506
  • 115 Zhang N, Duan WD, Leng JJ. , et al. STAT3 regulates the migration and invasion of a stem-like subpopulation through microRNA-21 and multiple targets in hepatocellular carcinoma. Oncol Rep 2015; 33 (03) 1493-1498
  • 116 Li CH, Xu F, Chow S. , et al. Hepatitis B virus X protein promotes hepatocellular carcinoma transformation through interleukin-6 activation of microRNA-21 expression. Eur J Cancer 2014; 50 (15) 2560-2569
  • 117 Yin D, Wang Y, Sai W. , et al. HBx-induced miR-21 suppresses cell apoptosis in hepatocellular carcinoma by targeting interleukin-12. Oncol Rep 2016; 36 (04) 2305-2312
  • 118 Qiu X, Dong S, Qiao F. , et al. HBx-mediated miR-21 upregulation represses tumor-suppressor function of PDCD4 in hepatocellular carcinoma. Oncogene 2013; 32 (27) 3296-3305
  • 119 Zhu Q, Wang Z, Hu Y. , et al. miR-21 promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback loop in human hepatocellular carcinoma. Oncol Rep 2012; 27 (05) 1660-1668
  • 120 Shih YT, Wang MC, Zhou J, Peng HH, Lee DY, Chiu JJ. Endothelial progenitors promote hepatocarcinoma intrahepatic metastasis through monocyte chemotactic protein-1 induction of microRNA-21. Gut 2015; 64 (07) 1132-1147
  • 121 Ning BF, Ding J, Liu J. , et al. Hepatocyte nuclear factor 4α-nuclear factor-κB feedback circuit modulates liver cancer progression. Hepatology 2014; 60 (05) 1607-1619
  • 122 Zhang K, Chen J, Chen D. , et al. Aurora-A promotes chemoresistance in hepatocelluar carcinoma by targeting NF-kappaB/microRNA-21/PTEN signaling pathway. Oncotarget 2014; 5 (24) 12916-12935
  • 123 Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012; 13 (02) 89-102
  • 124 Shuda M, Kondoh N, Imazeki N. , et al. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J Hepatol 2003; 38 (05) 605-614
  • 125 Gifford JB, Hill R. GRP78 influences chemoresistance and prognosis in cancer. Curr Drug Targets 2018; 19 (06) 701-708
  • 126 Tang J, Guo YS, Zhang Y. , et al. CD147 induces UPR to inhibit apoptosis and chemosensitivity by increasing the transcription of Bip in hepatocellular carcinoma. Cell Death Differ 2012; 19 (11) 1779-1790
  • 127 Nakagawa H, Umemura A, Taniguchi K. , et al. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 2014; 26 (03) 331-343
  • 128 Wu Y, Shan B, Dai J. , et al. Dual role for inositol-requiring enzyme 1α in promoting the development of hepatocellular carcinoma during diet-induced obesity in mice. Hepatology 2018; 68 (02) 533-546
  • 129 Nan J, Xing YF, Hu B. , et al. Endoplasmic reticulum stress induced LOX-1+ CD15+ polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma. Immunology 2018; 154 (01) 144-155
  • 130 Ringelhan M, O'Connor T, Protzer U, Heikenwalder M. The direct and indirect roles of HBV in liver cancer: prospective markers for HCC screening and potential therapeutic targets. J Pathol 2015; 235 (02) 355-367
  • 131 Nakamoto Y, Guidotti LG, Kuhlen CV, Fowler P, Chisari FV. Immune pathogenesis of hepatocellular carcinoma. J Exp Med 1998; 188 (02) 341-350
  • 132 Sunami Y, Ringelhan M, Kokai E. , et al. Canonical NF-κB signaling in hepatocytes acts as a tumor-suppressor in hepatitis B virus surface antigen-driven hepatocellular carcinoma by controlling the unfolded protein response. Hepatology 2016; 63 (05) 1592-1607
  • 133 Kim CM, Koike K, Saito I, Miyamura T, Jay G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 1991; 351 (6324): 317-320
  • 134 Yu DY, Moon HB, Son JK. , et al. Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein. J Hepatol 1999; 31 (01) 123-132
  • 135 Goossens N, Hoshida Y. Hepatitis C virus-induced hepatocellular carcinoma. Clin Mol Hepatol 2015; 21 (02) 105-114
  • 136 Grandhe S, Frenette CT. Occurrence and recurrence of hepatocellular carcinoma after successful direct-acting antiviral therapy for patients with chronic hepatitis C virus infection. Gastroenterol Hepatol (N Y) 2017; 13 (07) 421-425
  • 137 Reig M, Mariño Z, Perelló C. , et al. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J Hepatol 2016; 65 (04) 719-726
  • 138 Reig M, Boix L, Mariño Z, Torres F, Forns X, Bruix J. Liver cancer emergence associated with antiviral treatment: an immune surveillance failure?. Semin Liver Dis 2017; 37 (02) 109-118
  • 139 Faillaci F, Marzi L, Critelli R. , et al. Liver Angiopoietin-2 is a key predictor of de novo or recurrent hepatocellular cancer after HCV direct-acting antivirals. Hepatology 2018 doi: 10.1002/hep.29911
  • 140 Ponziani FR, Bhoori S, Castelli C. , et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology 2018 doi: 10.1002/hep.30036
  • 141 Liu YL, Patman GL, Leathart JB. , et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol 2014; 61 (01) 75-81
  • 142 Khlaiphuengsin A, Kiatbumrung R, Payungporn S, Pinjaroen N, Tangkijvanich P. Association of PNPLA3 polymorphism with hepatocellular carcinoma development and prognosis in viral and non-viral chronic liver diseases. Asian Pac J Cancer Prev 2015; 16 (18) 8377-8382
  • 143 Valenti L, Motta BM, Soardo G. , et al. PNPLA3 I148M polymorphism, clinical presentation, and survival in patients with hepatocellular carcinoma. PLoS One 2013; 8 (10) e75982
  • 144 Hassan MM, Kaseb A, Etzel CJ. , et al. Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction. Mol Carcinog 2013; 52 (Suppl. 01) E139-E147
  • 145 Falleti E, Fabris C, Cmet S. , et al. PNPLA3 rs738409C/G polymorphism in cirrhosis: relationship with the aetiology of liver disease and hepatocellular carcinoma occurrence. Liver Int 2011; 31 (08) 1137-1143
  • 146 Smagris E, BasuRay S, Li J. , et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 2015; 61 (01) 108-118
  • 147 Li JZ, Huang Y, Karaman R. , et al. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J Clin Invest 2012; 122 (11) 4130-4144
  • 148 Liu Z, Chen T, Lu X, Xie H, Zhou L, Zheng S. Overexpression of variant PNPLA3 gene at I148M position causes malignant transformation of hepatocytes via IL-6-JAK2/STAT3 pathway in low dose free fatty acid exposure: a laboratory investigation in vitro and in vivo. Am J Transl Res 2016; 8 (03) 1319-1338
  • 149 Bruschi FV, Claudel T, Tardelli M. , et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 2017; 65 (06) 1875-1890
  • 150 Scoccianti C, Cecchini M, Anderson AS. , et al. European Code against Cancer 4th Edition: alcohol drinking and cancer. Cancer Epidemiol 2016; 45: 181-188
  • 151 Ohhira M, Ohtake T, Matsumoto A. , et al. Immunohistochemical detection of 4-hydroxy-2-nonenal-modified-protein adducts in human alcoholic liver diseases. Alcohol Clin Exp Res 1998; 22 (3, Suppl): 145S-149S
  • 152 Abdelmegeed MA, Banerjee A, Jang S. , et al. CYP2E1 potentiates binge alcohol-induced gut leakiness, steatohepatitis, and apoptosis. Free Radic Biol Med 2013; 65: 1238-1245
  • 153 Ye Q, Lian F, Chavez PR. , et al. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats. Hepatobiliary Surg Nutr 2012; 1 (01) 5-18
  • 154 Kwon HJ, Won YS, Park O. , et al. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology 2014; 60 (01) 146-157
  • 155 Sakamoto T, Hara M, Higaki Y. , et al. Influence of alcohol consumption and gene polymorphisms of ADH2 and ALDH2 on hepatocellular carcinoma in a Japanese population. Int J Cancer 2006; 118 (06) 1501-1507
  • 156 Guyot E, Sutton A, Rufat P. , et al. PNPLA3 rs738409, hepatocellular carcinoma occurrence and risk model prediction in patients with cirrhosis. J Hepatol 2013; 58 (02) 312-318
  • 157 Falleti E, Cussigh A, Cmet S, Fabris C, Toniutto P. PNPLA3 rs738409 and TM6SF2 rs58542926 variants increase the risk of hepatocellular carcinoma in alcoholic cirrhosis. Dig Liver Dis 2016; 48 (01) 69-75
  • 158 Drobits B, Holcmann M, Amberg N. , et al. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest 2012; 122 (02) 575-585
  • 159 Nierkens S, den Brok MH, Garcia Z. , et al. Immune adjuvant efficacy of CpG oligonucleotide in cancer treatment is founded specifically upon TLR9 function in plasmacytoid dendritic cells. Cancer Res 2011; 71 (20) 6428-6437
  • 160 Ebihara T, Azuma M, Oshiumi H. , et al. Identification of a polyI:C-inducible membrane protein that participates in dendritic cell-mediated natural killer cell activation. J Exp Med 2010; 207 (12) 2675-2687
  • 161 Shime H, Matsumoto M, Oshiumi H. , et al. Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci U S A 2012; 109 (06) 2066-2071
  • 162 Hoffman ES, Smith RE, Renaud Jr RC. From the analyst's couch: TLR-targeted therapeutics. Nat Rev Drug Discov 2005; 4 (11) 879-880
  • 163 Paavonen J, Naud P, Salmerón J. , et al; HPV PATRICIA Study Group. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 2009; 374 (9686): 301-314
  • 164 Lehtinen M, Paavonen J. Sound efficacy of prophylactic HPV vaccination: basics and implications. OncoImmunology 2012; 1 (06) 995-996
  • 165 Iñarrairaegui M, Melero I, Sangro B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin Cancer Res 2018; 24 (07) 1518-1524
  • 166 Sangro B, Gomez-Martin C, de la Mata M. , et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 2013; 59 (01) 81-88
  • 167 Duffy AG, Ulahannan SV, Makorova-Rusher O. , et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 2017; 66 (03) 545-551
  • 168 El-Khoueiry AB, Sangro B, Yau T. , et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389 (10088): 2492-2502
  • 169 Greten TF, Sangro B. Targets for immunotherapy of liver cancer. J Hepatol 2018; 68: 157-166
  • 170 Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018; 15 (02) 95-111
  • 171 Yamada D, Rizvi S, Razumilava N. , et al. IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism. Hepatology 2015; 61 (05) 1627-1642
  • 172 Li J, Razumilava N, Gores GJ. , et al. Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J Clin Invest 2014; 124 (07) 3241-3251
  • 173 Fan B, Malato Y, Calvisi DF. , et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 2012; 122 (08) 2911-2915
  • 174 Guest RV, Boulter L, Kendall TJ. , et al. Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma. Cancer Res 2014; 74 (04) 1005-1010
  • 175 Sekiya S, Suzuki A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J Clin Invest 2012; 122 (11) 3914-3918
  • 176 Mu X, Pradere JP, Affò S. , et al. Epithelial transforming growth factor-β signaling does not contribute to liver fibrosis but protects mice from cholangiocarcinoma. Gastroenterology 2016; 150 (03) 720-733
  • 177 Yuan D, Huang S, Berger E. , et al. Kupffer cell-derived Tnf triggers cholangiocellular tumorigenesis through JNK due to chronic mitochondrial dysfunction and ROS. Cancer Cell 2017; 31 (06) 771-789.e6
  • 178 Cadamuro M, Stecca T, Brivio S. , et al. The deleterious interplay between tumor epithelia and stroma in cholangiocarcinoma. Biochim Biophys Acta 2018; 1864 (4 Pt B): 1435-1443
  • 179 Mertens JC, Fingas CD, Christensen JD. , et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res 2013; 73 (02) 897-907
  • 180 Seubert B, Grünwald B, Kobuch J. , et al. Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology 2015; 61 (01) 238-248
  • 181 Grünwald B, Harant V, Schaten S. , et al. Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology 2016; 151 (05) 1011-1024.e7
  • 182 Schulz PO, Ferreira FG, Nascimento MdeF. , et al. Association of nonalcoholic fatty liver disease and liver cancer. World J Gastroenterol 2015; 21 (03) 913-918
  • 183 Brouquet A, Nordlinger B. Metastatic colorectal cancer outcome and fatty liver disease. Nat Rev Gastroenterol Hepatol 2013; 10 (05) 266-267
  • 184 Ocak Duran A, Yildirim A, Inanc M. , et al. Hepatic steatosis is associated with higher incidence of liver metastasis in patients with metastatic breast cancer; an observational clinical study. J BUON 2015; 20 (04) 963-969
  • 185 Molla NW, Hassanain MM, Fadel Z. , et al. Effect of non-alcoholic liver disease on recurrence rate and liver regeneration after liver resection for colorectal liver metastases. Curr Oncol 2017; 24 (03) e233-e243
  • 186 Ramos E, Torras J, Lladó L. , et al. The influence of steatosis on the short- and long-term results of resection of liver metastases from colorectal carcinoma. HPB 2016; 18 (04) 389-396
  • 187 Amptoulach S, Gross G, Kalaitzakis E. Differential impact of obesity and diabetes mellitus on survival after liver resection for colorectal cancer metastases. J Surg Res 2015; 199 (02) 378-385
  • 188 Shen Z, Ye Y, Bin L. , et al. Metabolic syndrome is an important factor for the evolution of prognosis of colorectal cancer: survival, recurrence, and liver metastasis. Am J Surg 2010; 200 (01) 59-63
  • 189 VanSaun MN, Lee IK, Washington MK, Matrisian L, Gorden DL. High fat diet induced hepatic steatosis establishes a permissive microenvironment for colorectal metastases and promotes primary dysplasia in a murine model. Am J Pathol 2009; 175 (01) 355-364
  • 190 Earl TM, Nicoud IB, Pierce JM. , et al. Silencing of TLR4 decreases liver tumor burden in a murine model of colorectal metastasis and hepatic steatosis. Ann Surg Oncol 2009; 16 (04) 1043-1050
  • 191 Dawson DW, Hertzer K, Moro A. , et al. High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prev Res (Phila) 2013; 6 (10) 1064-1073
  • 192 Wu Y, Brodt P, Sun H. , et al. Insulin-like growth factor-I regulates the liver microenvironment in obese mice and promotes liver metastasis. Cancer Res 2010; 70 (01) 57-67
  • 193 Mendonsa AM, VanSaun MN, Ustione A, Piston DW, Fingleton BM, Gorden DL. Host and tumor derived MMP13 regulate extravasation and establishment of colorectal metastases in the liver. Mol Cancer 2015; 14: 49
  • 194 Llovet JM, Ricci S, Mazzaferro V. , et al; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359 (04) 378-390
  • 195 Berasain C. Hepatocellular carcinoma and sorafenib: too many resistance mechanisms?. Gut 2013; 62 (12) 1674-1675
  • 196 Kudo M, Finn RS, Qin S. , et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet 2018; 391 (10126): 1163-1173
  • 197 Chai ZT, Zhu XD, Ao JY. , et al. MicroRNA-26a suppresses recruitment of macrophages by down-regulating macrophage colony-stimulating factor expression through the PI3K/Akt pathway in hepatocellular carcinoma. J Hematol Oncol 2015; 8: 56
  • 198 Zhou SL, Hu ZQ, Zhou ZJ. , et al. miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis. Hepatology 2016; 63 (05) 1560-1575
  • 199 Wei X, Tang C, Lu X. , et al. MiR-101 targets DUSP1 to regulate the TGF-β secretion in sorafenib inhibits macrophage-induced growth of hepatocarcinoma. Oncotarget 2015; 6 (21) 18389-18405
  • 200 Lu S, Gao Y, Huang X, Wang X. Cantharidin exerts anti-hepatocellular carcinoma by miR-214 modulating macrophage polarization. Int J Biol Sci 2014; 10 (04) 415-425
  • 201 Yang H, Lan P, Hou Z. , et al. Histone deacetylase inhibitor SAHA epigenetically regulates miR-17-92 cluster and MCM7 to upregulate MICA expression in hepatoma. Br J Cancer 2015; 112 (01) 112-121
  • 202 Xie H, Zhang Q, Zhou H. , et al. MicroRNA-889 is downregulated by histone deacetylase inhibitors and confers resistance to natural killer cytotoxicity in hepatocellular carcinoma cells. Cytotechnology 2018; 70 (02) 513-521
  • 203 Xu D, Han Q, Hou Z, Zhang C, Zhang J. miR-146a negatively regulates NK cell functions via STAT1 signaling. Cell Mol Immunol 2017; 14 (08) 712-720
  • 204 Rahmoon MA, Youness RA, Gomaa AI. , et al. MiR-615-5p depresses natural killer cells cytotoxicity through repressing IGF-1R in hepatocellular carcinoma patients. Growth Factors 2017; 35 (2-3): 76-87
  • 205 Bian X, Si Y, Zhang M. , et al. Down-expression of miR-152 lead to impaired anti-tumor effect of NK via upregulation of HLA-G. Tumour Biol 2016; 37 (03) 3749-3756
  • 206 Abdelrahman MM, Fawzy IO, Bassiouni AA. , et al. Enhancing NK cell cytotoxicity by miR-182 in hepatocellular carcinoma. Hum Immunol 2016; 77 (08) 667-673
  • 207 Youness RA, Rahmoon MA, Assal RA. , et al. Contradicting interplay between insulin-like growth factor-1 and miR-486-5p in primary NK cells and hepatoma cell lines with a contemporary inhibitory impact on HCC tumor progression. Growth Factors 2016; 34 (3-4): 128-140