Semin Neurol 2019; 39(02): 264-273
DOI: 10.1055/s-0039-1678584
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Rare Tauopathies

Farwa Ali
1   Department of Neurology, Mayo Clinic, Rochester, Minnesota
,
Keith Josephs
1   Department of Neurology, Mayo Clinic, Rochester, Minnesota
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. März 2019 (online)

Abstract

Tauopathies are rare neurodegenerative disorders related to microtubule-associated protein tau, which functions to stabilize microtubules. Pathological changes caused by overexpression or hyperphosphorylation of tau lead to the disengagement of tau from microtubules and accumulation of toxic intracellular inclusions. Tau pathology is the underlying mechanism for several sporadic and genetic disorders. These are collectively known as tauopathies. Each tauopathy is differentiated from others by its neuropathological features such as the presence of specific isoforms of tau, type of cellular inclusions, and the regions of the brain affected. Neuropathological features, with a few exceptions however, do not correspond to distinct clinical phenotypes. There is considerable phenotypic overlap between the different tauopathies. Interaction between tau and other protein inclusions further alters the clinical phenotype.

Recent advances in the development of tau biomarkers, especially the development of tau radioligands used in positron emission tomography neuroimaging, and a better understanding of biology and pathology of tau are important first steps toward the ultimate goal of accurate diagnosis and disease modification in tauopathies.

 
  • References

  • 1 Josephs KA, Hodges JR, Snowden JS. , et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 2011; 122 (02) 137-153
  • 2 Kovacs GG. Invited review: neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol 2015; 41 (01) 3-23
  • 3 Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 1975; 72 (05) 1858-1862
  • 4 Kempf M, Clement A, Faissner A, Lee G, Brandt R. Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 1996; 16 (18) 5583-5592
  • 5 Komori T. Pathology of oligodendroglia: an overview. Neuropathology 2017; 37 (05) 465-474
  • 6 Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 1989; 8 (02) 393-399
  • 7 Myers AJ, Pittman AM, Zhao AS. , et al. The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol Dis 2007; 25 (03) 561-570
  • 8 Bodea LG, Eckert A, Ittner LM. . of OPJ. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. Wiley Online Library; 2016
  • 9 Gibb GM, de Silva R, Revesz T, Lees AJ, Anderton BH, Hanger DP. Differential involvement and heterogeneous phosphorylation of tau isoforms in progressive supranuclear palsy. Brain Res Mol Brain Res 2004; 121 (1-2): 95-101
  • 10 Lindwall G, Cole RD. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 1984; 259 (08) 5301-5305
  • 11 Morris M, Knudsen GM, Maeda S. , et al. Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 2015; 18 (08) 1183-1189
  • 12 Zhao Y, Tseng I-C, Heyser CJ. , et al. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis. Neuron 2015; 87 (05) 963-975
  • 13 Zhang C-C, Xing A, Tan M-S, Tan L, Yu J-T. The role of MAPT in neurodegenerative diseases: genetics, mechanisms and therapy. Mol Neurobiol 2016; 53 (07) 4893-4904
  • 14 Schoch KM, DeVos SL, Miller RL. , et al. Increased 4R-tau induces pathological changes in a human-tau mouse model. Neuron 2016; 90 (05) 941-947
  • 15 Clavaguera F, Akatsu H, Fraser G. , et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A 2013; 110 (23) 9535-9540
  • 16 Maphis N, Xu G, Kokiko-Cochran ON. , et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 2015; 138 (Pt 6): 1738-1755
  • 17 Ittner LM, Ke YD, Delerue F. , et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 2010; 142 (03) 387-397
  • 18 Gu J, Chen F, Iqbal K, Gong C-X, Wang X, Liu F. Transactive response DNA-binding protein 43 (TDP-43) regulates alternative splicing of tau exon 10: implications for the pathogenesis of tauopathies. J Biol Chem 2017; 292 (25) 10600-10612
  • 19 Armstrong MJ, Litvan I, Lang AE. , et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013; 80 (05) 496-503
  • 20 Höglinger GU, Respondek G, Stamelou M. , et al; Movement Disorder Society-endorsed PSP Study Group. Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 2017; 32 (06) 853-864
  • 21 Forrest SL, Kril JJ, Stevens CH. , et al. Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain 2018; 141 (02) 521-534
  • 22 Josephs KA. Rest in peace FTDP-17. Brain 2018; 141 (02) 324-331
  • 23 Togo T, Sahara N, Yen S-H. , et al. Argyrophilic grain disease is a sporadic 4-repeat tauopathy. J Neuropathol Exp Neurol 2002; 61 (06) 547-556
  • 24 Kouri N, Whitwell JL, Josephs KA, Rademakers R, Dickson DW. Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nat Rev Neurol 2011; 7 (05) 263-272
  • 25 Yokoyama JS, Karch CM, Fan CC. , et al; International FTD-Genomics Consortium (IFGC). Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathol 2017; 133 (05) 825-837
  • 26 Ghetti B, Oblak AL, Boeve BF, Johnson KA, Dickerson BC, Goedert M. Invited review: frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol 2015; 41 (01) 24-46
  • 27 Tacik P, Sanchez-Contreras M, Rademakers R, Dickson DW, Wszolek ZK. Genetic disorders with tau pathology: a review of the literature and report of two patients with tauopathy and positive family histories. Neurodegener Dis 2016; 16 (1-2): 12-21
  • 28 Coppola G, Chinnathambi S, Lee JJ. , et al; Alzheimer's Disease Genetics Consortium. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Hum Mol Genet 2012; 21 (15) 3500-3512
  • 29 Fujioka S, Sanchez Contreras MY, Strongosky AJ. , et al. Three sib-pairs of autopsy-confirmed progressive supranuclear palsy. Parkinsonism Relat Disord 2015; 21 (02) 101-105
  • 30 Höglinger GU, Melhem NM, Dickson DW. , et al; PSP Genetics Study Group. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 2011; 43 (07) 699-705
  • 31 Kouri N, Ross OA, Dombroski B. , et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat Commun 2015; 6: 7247
  • 32 Wilke C, Pomper JK, Biskup S, Puskás C, Berg D, Synofzik M. Atypical parkinsonism in C9orf72 expansions: a case report and systematic review of 45 cases from the literature. J Neurol 2016; 263 (03) 558-574
  • 33 Gustavsson EK, Trinh J, Guella I. , et al. DCTN1 p.K56R in progressive supranuclear palsy. Parkinsonism Relat Disord 2016; 28 (C): 56-61
  • 34 Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 1964; 10: 333-359
  • 35 Hauw JJ, Daniel SE, Dickson D. , et al. Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 1994; 44 (11) 2015-2019
  • 36 Dickson DW. Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J Neurol 1999; 246 (Suppl. 02) II6-II15
  • 37 Litvan I, Agid Y, Calne D. , et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996; 47 (01) 1-9
  • 38 Owens E, Josephs KA, Savica R. , et al. The clinical spectrum and natural history of pure akinesia with gait freezing. J Neurol 2016; 263 (12) 2419-2423
  • 39 Kurz C, Ebersbach G, Respondek G, Giese A, Arzberger T, Höglinger GU. An autopsy-confirmed case of progressive supranuclear palsy with predominant postural instability. Acta Neuropathol Commun 2016; 4 (01) 120
  • 40 Morris HR, Gibb G, Katzenschlager R. , et al. Pathological, clinical and genetic heterogeneity in progressive supranuclear palsy. Brain 2002; 125 (Pt 5): 969-975
  • 41 Respondek G, Höglinger GU. The phenotypic spectrum of progressive supranuclear palsy. Parkinsonism Relat Disord 2016; 22 (Suppl. 01) S34-S36
  • 42 Respondek G, Stamelou M, Kurz C. , et al; Movement Disorder Society-endorsed PSP Study Group. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord 2014; 29 (14) 1758-1766
  • 43 Donker Kaat L, Boon AJW, Kamphorst W, Ravid R, Duivenvoorden HJ, van Swieten JC. Frontal presentation in progressive supranuclear palsy. Neurology 2007; 69 (08) 723-729
  • 44 Josephs KA, Duffy JR, Strand EA. , et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006; 129 (Pt 6): 1385-1398
  • 45 Josephs KA, Duffy JR. Apraxia of speech and nonfluent aphasia: a new clinical marker for corticobasal degeneration and progressive supranuclear palsy. Curr Opin Neurol 2008; 21 (06) 688-692
  • 46 Josephs KA, Duffy JR, Strand EA. , et al. The evolution of primary progressive apraxia of speech. Brain 2014; 137 (Pt 10): 2783-2795
  • 47 Respondek G, Kurz C, Arzberger T. , et al; Movement Disorder Society-Endorsed PSP Study Group. Which ante mortem clinical features predict progressive supranuclear palsy pathology?. Mov Disord 2017; 32 (07) 995-1005
  • 48 Dickson DW, Bergeron C, Chin SS. , et al; Office of Rare Diseases of the National Institutes of Health. Office of rare diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 2002; 61 (11) 935-946
  • 49 Ling H, O'Sullivan SS, Holton JL. , et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 2010; 133 (Pt 7): 2045-2057
  • 50 Kouri N, Murray ME, Hassan A. , et al. Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. Brain 2011; 134 (Pt 11): 3264-3275
  • 51 Alexander SK, Rittman T, Xuereb JH, Bak TH, Hodges JR, Rowe JB. Validation of the new consensus criteria for the diagnosis of corticobasal degeneration. J Neurol Neurosurg Psychiatry 2014; 85 (08) 925-929
  • 52 Delacourte A, Sergeant N, Wattez A, Gauvreau D, Robitaille Y. Vulnerable neuronal subsets in Alzheimer's and Pick's disease are distinguished by their tau isoform distribution and phosphorylation. Ann Neurol 1998; 43 (02) 193-204
  • 53 Dickson DW. Neuropathology of Pick's disease. Neurology 2001; 56 (11) (Suppl. 04) S16-S20
  • 54 Dickson DW. Pick's disease: a modern approach. Brain Pathol 1998; 8 (02) 339-354
  • 55 Rankin KP, Mayo MC, Seeley WW. , et al. Behavioral variant frontotemporal dementia with corticobasal degeneration pathology: phenotypic comparison to bvFTD with Pick's disease. J Mol Neurosci 2011; 45 (03) 594-608
  • 56 Piguet O, Halliday GM, Reid WGJ. , et al. Clinical phenotypes in autopsy-confirmed Pick disease. Neurology 2011; 76 (03) 253-259
  • 57 Uyama N, Yokochi F, Bandoh M, Mizutani T. Primary progressive apraxia of speech (AOS) in a patient with Pick's disease with Pick bodies: a neuropsychological and anatomical study and review of literatures. Neurocase 2013; 19 (01) 14-21
  • 58 Ahmed Z, Bigio EH, Budka H. , et al. Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathol 2013; 126 (04) 537-544
  • 59 Josephs KA, Katsuse O, Beccano-Kelly DA. , et al. Atypical progressive supranuclear palsy with corticospinal tract degeneration. J Neuropathol Exp Neurol 2006; 65 (04) 396-405
  • 60 Kovacs GG, Majtenyi K, Spina S. , et al. White matter tauopathy with globular glial inclusions: a distinct sporadic frontotemporal lobar degeneration. J Neuropathol Exp Neurol 2008; 67 (10) 963-975
  • 61 Braak H, Braak E. Argyrophilic grains: characteristic pathology of cerebral cortex in cases of adult onset dementia without Alzheimer changes. Neurosci Lett 1987; 76 (01) 124-127
  • 62 Saito Y, Ruberu NN, Sawabe M. , et al. Staging of argyrophilic grains: an age-associated tauopathy. J Neuropathol Exp Neurol 2004; 63 (09) 911-918
  • 63 Tolnay M, Clavaguera F. Argyrophilic grain disease: a late-onset dementia with distinctive features among tauopathies. Neuropathology 2004; 24 (04) 269-283
  • 64 Martinez-Lage P, Munoz DG. Prevalence and disease associations of argyrophilic grains of Braak. J Neuropathol Exp Neurol 1997; 56 (02) 157-164
  • 65 Josephs KA, Whitwell JL, Parisi JE. , et al. Argyrophilic grains: a distinct disease or an additive pathology?. Neurobiol Aging 2008; 29 (04) 566-573
  • 66 Crary JF, Trojanowski JQ, Schneider JA. , et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 2014; 128 (06) 755-766
  • 67 Janocko NJ, Brodersen KA, Soto-Ortolaza AI. , et al. Neuropathologically defined subtypes of Alzheimer's disease differ significantly from neurofibrillary tangle-predominant dementia. Acta Neuropathol 2012; 124 (05) 681-692
  • 68 Josephs KA, Murray ME, Tosakulwong N. , et al. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathol 2017; 133 (05) 705-715
  • 69 Jellinger KA, Alafuzoff I, Attems J. , et al. PART, a distinct tauopathy, different from classical sporadic Alzheimer disease. Acta Neuropathol 2015; 129 (05) 757-762
  • 70 Kovacs GG, Ferrer I, Grinberg LT. , et al. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol 2016; 131 (01) 87-102
  • 71 Kovacs GG, Robinson JL, Xie SX. , et al. Evaluating the patterns of aging-related tau astrogliopathy unravels novel insights into brain aging and neurodegenerative diseases. J Neuropathol Exp Neurol 2017; 76 (04) 270-288
  • 72 Kovacs GG, Yousef A, Kaindl S, Lee VM, Trojanowski JQ. Connexin-43 and aquaporin-4 are markers of ageing-related tau astrogliopathy (ARTAG)-related astroglial response. Neuropathol Appl Neurobiol 2017; 131: 87-15
  • 73 Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991; 82 (04) 239-259
  • 74 Oikawa T, Nonaka T, Terada M, Tamaoka A, Hisanaga S, Hasegawa M. α-synuclein fibrils exhibit gain of toxic function, promoting tau aggregation and inhibiting microtubule assembly. J Biol Chem 2016; 291 (29) 15046-15056
  • 75 Distl R, Treiber-Held S, Albert F, Meske V, Harzer K, Ohm TG. Cholesterol storage and tau pathology in Niemann-Pick type C disease in the brain. J Pathol 2003; 200 (01) 104-111
  • 76 Li A, Paudel R, Johnson R. , et al. Pantothenate kinase-associated neurodegeneration is not a synucleinopathy. Neuropathol Appl Neurobiol 2013; 39 (02) 121-131
  • 77 Kapás I, Katkó M, Harangi M. , et al. Cerebrotendinous xanthomatosis with the c.379C>T (p.R127W) mutation in the CYP27A1 gene associated with premature age-associated limbic tauopathy. Neuropathol Appl Neurobiol 2014; 40 (03) 345-350
  • 78 Puoti G, Bizzi A, Forloni G, Safar JG, Tagliavini F, Gambetti P. ; MD GP. Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol 2012; 11 (07) 618-628
  • 79 Ikeda K, Akiyama H, Kondo H, Arai T, Arai N, Yagishita S. Numerous glial fibrillary tangles in oligodendroglia in cases of subacute sclerosing panencephalitis with neurofibrillary tangles. Neurosci Lett 1995; 194 (1-2): 133-135
  • 80 Scherrer VB, Buée L, Leveugle B. , et al. Pathological τ proteins in postencephalitic parkinsonism: Comparison with Alzheimer's disease and other neurodegenerative disorders. Ann Neurol 2004; 42 (03) 356-359
  • 81 McKee AC, Stern RA, Nowinski CJ. , et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 2013; 136 (Pt 1): 43-64
  • 82 Stein TD, Alvarez VE, McKee AC. Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel. Alzheimers Res Ther 2014; 6 (01) 4
  • 83 McKee AC, Cairns NJ, Dickson DW. , et al; TBI/CTE group. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 2016; 131 (01) 75-86
  • 84 Rojas JC, Karydas A, Bang J. , et al. Plasma neurofilament light chain predicts progression in progressive supranuclear palsy. Ann Clin Transl Neurol 2016; 3 (03) 216-225
  • 85 Scherling CS, Hall T, Berisha F. , et al. Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann Neurol 2014; 75 (01) 116-126
  • 86 Magdalinou NK, Paterson RW, Schott JM. , et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2015; 86 (11) 1240-1247
  • 87 Noguchi M, Yoshita M, Matsumoto Y, Ono K, Iwasa K, Yamada M. Decreased β-amyloid peptide42 in cerebrospinal fluid of patients with progressive supranuclear palsy and corticobasal degeneration. J Neurol Sci 2005; 237 (1-2): 61-65
  • 88 Whitwell JL, Jack Jr CR, Boeve BF. , et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 2010; 75 (21) 1879-1887
  • 89 Josephs KA, Tang-Wai DF, Edland SD. , et al. Correlation between antemortem magnetic resonance imaging findings and pathologically confirmed corticobasal degeneration. Arch Neurol 2004; 61 (12) 1881-1884
  • 90 Mueller C, Hussl A, Krismer F. , et al. The diagnostic accuracy of the hummingbird and morning glory sign in patients with neurodegenerative parkinsonism. Parkinsonism Relat Disord 2018; 54: 90-94
  • 91 Whitwell JL, Jack Jr CR, Parisi JE. , et al. Midbrain atrophy is not a biomarker of progressive supranuclear palsy pathology. Eur J Neurol 2013; 20 (10) 1417-1422
  • 92 Neary D, Snowden J, Mann D. Frontotemporal dementia. Lancet Neurol 2005; 4 (11) 771-780
  • 93 Whitwell JL, Weigand SD, Boeve BF. , et al. Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain 2012; 135 (Pt 3): 794-806
  • 94 Whitwell JL, Schwarz CG, Reid RI, Kantarci K, Jack Jr CR, Josephs KA. Diffusion tensor imaging comparison of progressive supranuclear palsy and corticobasal syndromes. Parkinsonism Relat Disord 2014; 20 (05) 493-498
  • 95 Zalewski N, Botha H, Whitwell JL, Lowe V, Dickson DW, Josephs KA. FDG-PET in pathologically confirmed spontaneous 4R-tauopathy variants. J Neurol 2014; 261 (04) 710-716
  • 96 Smith R, Schöll M, Honer M, Nilsson CF, Englund E, Hansson O. Tau neuropathology correlates with FDG-PET, but not AV-1451-PET, in progressive supranuclear palsy. Acta Neuropathol 2017; 133 (01) 149-151
  • 97 Xia C-F, Arteaga J, Chen G. , et al. [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease. Alzheimers Dement 2013; 9 (06) 666-676
  • 98 Lemoine L, Gillberg P-G, Svedberg M. , et al. Comparative binding properties of the tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. Alzheimers Res Ther 2017; 9 (01) 96
  • 99 Passamonti L, Vázquez Rodríguez P, Hong YT. , et al. 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy. Brain 2017; 140 (03) 781-791
  • 100 Ono M, Sahara N, Kumata K. , et al. Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies. Brain 2017; 140 (03) 764-780
  • 101 Whitwell JL, Lowe VJ, Tosakulwong N. , et al. [18 F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord 2017; 32 (01) 124-133
  • 102 Cho H, Choi JY, Hwang MS. , et al. Subcortical 18 F-AV-1451 binding patterns in progressive supranuclear palsy. Mov Disord 2017; 32 (01) 134-140
  • 103 Smith R, Schain M, Nilsson C. , et al. Increased basal ganglia binding of 18 F-AV-1451 in patients with progressive supranuclear palsy. Mov Disord 2017; 32 (01) 108-114
  • 104 Cho H, Baek MS, Choi JY. , et al. 18F-AV-1451 binds to motor-related subcortical gray and white matter in corticobasal syndrome. Neurology 2017; 89 (11) 1170-1178
  • 105 Josephs KA, Whitwell JL, Tacik P. , et al. [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration. Acta Neuropathol 2016; 132 (06) 931-933
  • 106 McMillan CT, Irwin DJ, Nasrallah I. , et al. Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathol 2016; 132 (06) 935-937
  • 107 Lowe VJ, Curran G, Fang P. , et al. An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun 2016; 4 (01) 58
  • 108 Cardoso F. Botulinum toxin in parkinsonism: the when, how, and which for botulinum toxin injections. Toxicon 2018; 147: 107-110
  • 109 Clerici I, Ferrazzoli D, Maestri R. , et al. Rehabilitation in progressive supranuclear palsy: Effectiveness of two multidisciplinary treatments. PLoS One 2017; 12 (02) e0170927-e0170912
  • 110 Wiblin L, Lee M, Burn D. Palliative care and its emerging role in Multiple System Atrophy and Progressive Supranuclear Palsy. Parkinsonism Relat Disord 2017; 34 (C): 7-14
  • 111 Marsili L, Suppa A, Berardelli A, Colosimo C. Therapeutic interventions in parkinsonism: corticobasal degeneration. Parkinsonism Relat Disord 2016; 22 (Suppl. 01) S96-S100
  • 112 Tolosa E, Litvan I, Höglinger GU. , et al; TAUROS Investigators. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord 2014; 29 (04) 470-478
  • 113 Boxer AL, Lang AE, Grossman M. , et al; AL-108-231 Investigators. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 2014; 13 (07) 676-685
  • 114 Bensimon G, Ludolph A, Agid Y, Vidailhet M, Payan C, Leigh PN. ; NNIPPS Study Group. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 2009; 132 (Pt 1): 156-171
  • 115 West T, Hu Y, Verghese PB. , et al. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer's disease and other tauopathies. J Prev Alzheimers Dis 2017; 4 (04) 236-241
  • 116 Kondo A, Shahpasand K, Mannix R. , et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 2015; 523 (7561): 431-436
  • 117 Yanamandra K, Kfoury N, Jiang H. , et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 2013; 80 (02) 402-414
  • 118 Mably AJ, Kanmert D, Mc Donald JM. , et al. Tau immunization: a cautionary tale?. Neurobiol Aging 2015; 36 (03) 1316-1332
  • 119 Karran E, Hardy J. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol 2014; 76 (02) 185-205
  • 120 Cummings J, Ritter A, Zhong K. Clinical trials for disease-modifying therapies in Alzheimer's disease: a primer, lessons learned, and a blueprint for the future. J Alzheimers Dis 2018; 64 (s1): S3-S22
  • 121 Marschall AL, Dübel S, Böldicke T. Specific in vivo knockdown of protein function by intrabodies. MAbs 2015; 7 (06) 1010-1035
  • 122 DeVos SL, Goncharoff DK, Chen G. , et al. Antisense reduction of tau in adult mice protects against seizures. J Neurosci 2013; 33 (31) 12887-12897
  • 123 Sud R, Geller ET, Schellenberg GD. Antisense-mediated exon skipping decreases tau protein expression: a potential therapy for tauopathies. Mol Ther Nucleic Acids 2014; 3: e180-e111