J Neurol Surg A Cent Eur Neurosurg 2019; 80(03): 187-197
DOI: 10.1055/s-0039-1678710
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Correlation of Appearance of MRI Perinidal T2 Hyperintensity Signal and Eventual Nidus Obliteration Following Photon Radiosurgery of Brain AVMs: Combined Results of LINAC and Gamma Knife Centers

Osama Abdelaziz
1   Department of Neurosurgery, Alexandria University, Alexandria, Egypt
,
Ahmed Shereen
1   Department of Neurosurgery, Alexandria University, Alexandria, Egypt
,
Takuro Inoue
2   Department of Neurosurgery, Koto Kinen Byoin, Higashiomi, Shiga, Japan
,
Hisao Hirai
2   Department of Neurosurgery, Koto Kinen Byoin, Higashiomi, Shiga, Japan
,
Ayako Shima
2   Department of Neurosurgery, Koto Kinen Byoin, Higashiomi, Shiga, Japan
› Institutsangaben
Weitere Informationen

Publikationsverlauf

09. Januar 2018

31. Juli 2018

Publikationsdatum:
20. März 2019 (online)

Abstract

Background A wide variety of radiologic changes occur within and adjacent to the nidus of arteriovenous malformations (AVMs) after stereotactic radiosurgery (SRS). Our objective was to study the magnetic resonance imaging(MRI)-defined changes following photon radiosurgery of AVMs and specifically to correlate the appearance of a perinidal T2 hyperintensity signal with the eventual angiographic obliteration of an AVM nidus in response to SRS treatment.

Material and Methods This retrospective study was conducted on 62 patients with brain AVMs who received photon SRS treatments between 2004 and 2017, using either a technique based on a linear accelerator at the Alexandria LINAC Radiosurgery Center in Egypt (21 patients/AVMs) or a technique based on a gamma unit at the Koto Memorial Gamma Knife Center in Japan (41 patients/AVMs). All patients included in the study had serial clinical and radiologic follow-ups for ≥ 2 years after SRS treatments.

Results In the combined study series of 62 patients/AVMs treated with photon SRS, the follow-up MRIs revealed that 50 AVMs (80.6%) showed nonvisualized nidus and 12 AVMs (19.4%) showed decreased nidus size. Radiation-induced changes, defined as appearance of perinidal T2 hyperintensities in post-SRS MRIs, occurred in 34 patients (54.8%). Of the 35 patients with available follow-up angiographic studies, 30 AVMs (85.7%) demonstrated complete nidus obliteration at a mean of 36 months (range: 8–66 months) after SRS. Of the 30 AVMs with both MRI evidence of a nonvisualized nidus and angiographic verification of complete nidus obliteration, 20 AVMs (66.7%) were associated with prior MRI evidence of the appearance of a perinidal T2 hyperintensity signal at an average of 12 months (range: 6–45 months) after SRS. Of the five AVMs with both MRI evidence of decreased nidus size and angiographic verification of partial nidus obliteration, four AVMs (80%) showed perinidal T2 hyperintensity signal on post-SRS follow-up MRIs. Lower Spetzler-Martin grade (p = 0.013), smaller AVM volume (p = 0.017), and appearance of post-SRS perinidal T2 hyperintensity signal (p = 0.007) were the statistically significant independent predictors of AVM obliteration. The appearance of perinidal T2 hyperintensity signal in the post-SRS MRIs had a sensitivity of 66.7%, a specificity of 20%, and an overall accuracy of 60% in predicting the eventual obliteration of the AVM nidus.

Conclusions The present study may help improve our current understanding of the mechanisms behind the radiation-induced tissue changes following AVM SRS. Because the SRS-induced hemodynamic changes within the AVM nidus initiate the cascade of the subsequent formation of perinidal vasogenic brain edema, the appearance of perinidal high T2 signal in the follow-up MRIs after SRS would be a valuable indicator of the AVM response to SRS. The development of perinidal hyperintensity was the strongest predictive factor of AVM obliteration (p = 0.007), with relatively high sensitivity (66.7%) and accuracy (60%) and fairly low specificity (20%), as a prognostic sign of eventual complete angiographic obliteration of the AVM nidus following SRS.

 
  • References

  • 1 Ozpinar A, Mendez G, Abla AA. Epidemiology, genetics, pathophysiology, and prognostic classifications of cerebral arteriovenous malformations. Handb Clin Neurol 2017; 143: 5-13
  • 2 Thomas JM, Surendran S, Abraham M, Rajavelu A, Kartha CC. Genetic and epigenetic mechanisms in the development of arteriovenous malformations in the brain. Clin Epigenetics 2016; 8: 78
  • 3 Osbun JW, Reynolds MR, Barrow DL. Arteriovenous malformations: epidemiology, clinical presentation, and diagnostic evaluation. Handb Clin Neurol 2017; 143: 25-29
  • 4 Abdelaziz OS, Abdelaziz A, Rostom Y, Kandil A, Al-Assaal S, Rashed Y. Linac radiosurgery of intracranial arteriovenous malformations: a single-center initial experience. Neurosurg Q 2011; 21 (02) 85-96
  • 5 Ding D, Starke RM, Kano H. , et al. Radiosurgery for cerebral arteriovenous malformations in a randomized trial of unruptured brain arteriovenous malformations (ARUBA)-eligible patients: a multicenter study. Stroke 2016; 47 (02) 342-349
  • 6 Kim H, Al-Shahi Salman R, McCulloch CE, Stapf C, Young WL. ; MARS Coinvestigators. Untreated brain arteriovenous malformation: patient-level meta-analysis of hemorrhage predictors. Neurology 2014; 83 (07) 590-597
  • 7 Ding D, Yen CP, Starke RM, Xu Z, Sheehan JP. Effect of prior hemorrhage on intracranial arteriovenous malformation radiosurgery outcomes. Cerebrovasc Dis 2015; 39 (01) 53-62
  • 8 Lawton MT, Du R, Tran MN. , et al. Effect of presenting hemorrhage on outcome after microsurgical resection of brain arteriovenous malformations. Neurosurgery 2005; 56 (03) 485-493
  • 9 Can A, Gross BA, Du R. The natural history of cerebral arteriovenous malformations. Handb Clin Neurol 2017; 143: 15-24
  • 10 Mohr JP, Parides MK, Stapf C. , et al; international ARUBA investigators. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet 2014; 383 (9917): 614-621
  • 11 Cohen-Inbar O, Starke RM, Paisan G. , et al. Early versus late arteriovenous malformation responders after stereotactic radiosurgery: an international multicenter study. J Neurosurg 2017; 127 (03) 503-511
  • 12 Patel PN, Vyas RK, Bhavsar DC, Suryanarayan UK, Pelagade S, Patel D. Analysis of X-knife and surgery in treatment of arteriovenous malformation of brain. J Cancer Res Ther 2008; 4 (04) 169-172
  • 13 Barker II FG, Butler WE, Lyons S. , et al. Dose-volume prediction of radiation-related complications after proton beam radiosurgery for cerebral arteriovenous malformations. J Neurosurg 2003; 99 (02) 254-263
  • 14 Flickinger JC, Lunsford LD, Kondziolka D. Dose-volume considerations in radiosurgery. Stereotact Funct Neurosurg 1991; 57 (1-2): 99-105
  • 15 Machnowska M, Taeshineetanakul P, Geibprasert S. , et al. Factors determining the clinical complications of radiosurgery for AVM. Can J Neurol Sci 2013; 40 (06) 807-813
  • 16 Tsuji A, Nozaki K. A prospective and retrospective study of cerebral AVM treatment strategies 1990–2014. Acta Neurochir Suppl (Wien) 2016; 123: 135-139
  • 17 Kjellberg RN, Hanamura T, Davis KR, Lyons SL, Adams RD. Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med 1983; 309 (05) 269-274
  • 18 Kjellberg RN. Proton beam therapy for arteriovenous malformations of the brain. In: Schmidek HH, Sweet WH. , eds. Operative Neurosurgical Techniques: Indications, Methods, and Results. Philadelphia, PA: WB Saunders; 1988: 911-915
  • 19 Arrese Regańón I, Alday R, González PA. , et al. Hyperintensity on T2 MRI and size as predictors of obliteration in radiosurgically treated arteriovenous malformations [in Spanish]. Neurocirugia (Astur) 2009; 20 (02) 97-102
  • 20 Maruyama K, Kawahara N, Shin M. , et al. The risk of hemorrhage after radiosurgery for cerebral arteriovenous malformations. N Engl J Med 2005; 352 (02) 146-153
  • 21 Friedman WA. Stereotactic radiosurgery of intracranial arteriovenous malformations. Neurosurg Clin N Am 2013; 24 (04) 561-574
  • 22 Mobin F, De Salles AAF, Abdelaziz O, Cabatan-Awang C, Solberg T, Selch M. Stereotactic radiosurgery of cerebral arteriovenous malformations: appearance of perinidal T(2) hyperintensity signal as a predictor of favorable treatment response. Stereotact Funct Neurosurg 1999; 73 (1–4): 50-59
  • 23 Tranvinh E, Heit JJ, Hacein-Bey L, Provenzale J, Wintermark M. Contemporary imaging of cerebral arteriovenous malformations. AJR Am J Roentgenol 2017; 208 (06) 1320-1330
  • 24 Lee CC, Reardon MA, Ball BZ. , et al. The predictive value of magnetic resonance imaging in evaluating intracranial arteriovenous malformation obliteration after stereotactic radiosurgery. J Neurosurg 2015; 123 (01) 136-144
  • 25 OʼConnor TE, Friedman WA. Magnetic resonance imaging assessment of cerebral arteriovenous malformation obliteration after stereotactic radiosurgery. Neurosurgery 2013; 73 (05) 761-766
  • 26 Ding D, Starke RM, Sheehan JP. Radiosurgery for the management of cerebral arteriovenous malformations. Handb Clin Neurol 2017; 143: 69-83
  • 27 Yen CP, Matsumoto JA, Wintermark M. , et al. Radiation-induced imaging changes following Gamma Knife surgery for cerebral arteriovenous malformations. J Neurosurg 2013; 118 (01) 63-73
  • 28 Levegrün S, Hof H, Essig M, Schlegel W, Debus J. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: dose/volume-response relations. Strahlenther Onkol 2004; 180 (12) 758-767
  • 29 Parkhutik V, Lago A, Aparici F. , et al. Late clinical and radiological complications of stereotactical radiosurgery of arteriovenous malformations of the brain. Neuroradiology 2013; 55 (04) 405-412
  • 30 Balagamwala EH, Chao ST, Suh JH. Principles of radiobiology of stereotactic radiosurgery and clinical applications in the central nervous system. Technol Cancer Res Treat 2012; 11 (01) 3-13
  • 31 Kondziolka D, Shin SM, Brunswick A, Kim I, Silverman JS. The biology of radiosurgery and its clinical applications for brain tumors. Neuro Oncol 2015; 17 (01) 29-44
  • 32 Santacroce A, Kamp MA, Budach W, Hänggi D. Radiobiology of radiosurgery for the central nervous system. BioMed Res Int 2013; 2013: 362761
  • 33 Kondziolka D, Niranjan A, Lunsford LD, Flickinger JC. Radiobiology of radiosurgery. Prog Neurol Surg 2007; 20: 16-27
  • 34 Niranjan A, Flickinger JC. Radiobiology, principle and technique of radiosurgery. Prog Neurol Surg 2008; 21: 32-42
  • 35 Szeifert GT, Major O, Kemeny AA. Ultrastructural changes in arteriovenous malformations after gamma knife surgery: an electron microscopic study. J Neurosurg 2005; 102 (Suppl): 289-292
  • 36 Kashba SR, Patel NJ, Grace M. , et al. Angiographic, hemodynamic, and histological changes in an animal model of brain arteriovenous malformations treated with Gamma Knife radiosurgery. J Neurosurg 2015; 123 (04) 954-960
  • 37 Szeifert GT, Levivier M, Lorenzoni J, Nyáry I, Major O, Kemeny AA. Morphological observations in brain arteriovenous malformations after gamma knife radiosurgery. Prog Neurol Surg 2013; 27: 119-129
  • 38 Wiesner S, Legate KR, Fässler R. Integrin-actin interactions. Cell Mol Life Sci 2005; 62 (10) 1081-1099
  • 39 Jahan R, Solberg TD, Lee D. , et al. Stereotactic radiosurgery of the rete mirabile in swine: a longitudinal study of histopathological changes. Neurosurgery 2006; 58 (03) 551-558 ; discussion 551–558
  • 40 Storer KP, Tu J, Stoodley MA, Smee RI. Expression of endothelial adhesion molecules after radiosurgery in an animal model of arteriovenous malformation. Neurosurgery 2010; 67 (04) 976-983 ; discussion 983
  • 41 Reddy R, Duong TT, Fairhall JM, Smee RI, Stoodley MA. Durable thrombosis in a rat model of arteriovenous malformation treated with radiosurgery and vascular targeting. J Neurosurg 2014; 120 (01) 113-119
  • 42 McRobb LS, Lee VS, Simonian M. , et al. Radiosurgery alters the endothelial surface proteome: externalized intracellular molecules as potential vascular targets in irradiated brain arteriovenous malformations. Radiat Res 2017; 187 (01) 66-78
  • 43 Szeifert GT, Timperley WR, Forster DM, Kemeny AA. Histopathological changes in cerebral arteriovenous malformations following Gamma Knife radiosurgery. Prog Neurol Surg 2007; 20: 212-219
  • 44 Wowra B, Muacevic A, Tonn JC, Schoenberg SO, Reiser M, Herrmann KA. Obliteration dynamics in cerebral arteriovenous malformations after cyberknife radiosurgery: quantification with sequential nidus volumetry and 3-tesla 3-dimensional time-of-flight magnetic resonance angiography. Neurosurgery 2009; 64 (2, Suppl): A102-A109
  • 45 Levegrün S, Hof H, Essig M, Schlegel W, Debus J. Radiation-induced changes of brain tissue after radiosurgery in patients with arteriovenous malformations: correlation with dose distribution parameters. Int J Radiat Oncol Biol Phys 2004; 59 (03) 796-808
  • 46 Jo KI, Kim JS, Hong SC, Lee JI. Hemodynamic changes in arteriovenous malformations after radiosurgery: transcranial Doppler evaluation. World Neurosurg 2012; 77 (02) 316-321
  • 47 Lawton MT, Arnold CM, Kim YJ. , et al. Radiation arteriopathy in the transgenic arteriovenous fistula model. Neurosurgery 2008; 62 (05) 1129-1138 ; discussion 138–139
  • 48 Schuster L, Schenk E, Giesel F. , et al. Changes in AVM angio-architecture and hemodynamics after stereotactic radiosurgery assessed by dynamic MRA and phase contrast flow assessments: a prospective follow-up study. Eur Radiol 2011; 21 (06) 1267-1276
  • 49 Tu J, Stoodley MA, Morgan MK, Storer KP. Responses of arteriovenous malformations to radiosurgery: ultrastructural changes. Neurosurgery 2006; 58 (04) 749-758 ; discussion 749–758
  • 50 Tu J, Stoodley MA, Morgan MK, Storer KP, Smee R. Different responses of cavernous malformations and arteriovenous malformations to radiosurgery. J Clin Neurosci 2009; 16 (07) 945-949
  • 51 Ding D, Xu Z, Shih HH. , et al. Worse outcomes after repeat vs initial stereotactic radiosurgery for cerebral arteriovenous malformations: a retrospective matched-cohort study. Neurosurgery 2016; 79 (05) 690-700
  • 52 Matsuo T, Kamada K, Izumo T, Hayashi N, Nagata I. Linear accelerator-based radiosurgery alone for arteriovenous malformation: more than 12 years of observation. Int J Radiat Oncol Biol Phys 2014; 89 (03) 576-583
  • 53 Ilyas A, Chen CJ, Ding D. , et al. Radiation-induced changes after stereotactic radiosurgery for brain arteriovenous malformations: A systematic review and meta-analysis. Neurosurgery 2018; 83 (03) 365-376
  • 54 Feutren T, Huertas A, Salleron J. , et al. Modern robot-assisted radiosurgery of cerebral angiomas—own experiences, system comparisons, and comprehensive literature overview. Neurosurg Rev 2018; 41 (03) 787-797
  • 55 Yamamoto M, Kawabe T, Barfod BE. Long-term side effects of radiosurgery for arteriovenous malformations. Prog Neurol Surg 2013; 27: 97-106
  • 56 Bir SC, Ambekar S, Maiti TK, Nanda A. Clinical outcome and complications of gamma knife radiosurgery for intracranial arteriovenous malformations. J Clin Neurosci 2015; 22 (07) 1117-1122
  • 57 Starke RM, Ding D, Kano H. , et al. International multicenter cohort study of pediatric brain arteriovenous malformations. Part 2: Outcomes after stereotactic radiosurgery. J Neurosurg Pediatr 2017; 19 (02) 136-148
  • 58 Boström JP, Bruckermann R, Pintea B, Boström A, Surber G, Hamm K. Treatment of cerebral arteriovenous malformations with radiosurgery or hypofractionated stereotactic radiotherapy in a consecutive pooled linear accelerator series. World Neurosurg 2016; 94: 328-338
  • 59 Zabel A, Milker-Zabel S, Huber P, Schulz-Ertner D, Schlegel W, Debus J. Treatment outcome after linac-based radiosurgery in cerebral arteriovenous malformations: retrospective analysis of factors affecting obliteration. Radiother Oncol 2005; 77 (01) 105-110
  • 60 van den Berg R, Buis DR, Lagerwaard FJ, Lycklama à Nijeholt GJ, Vandertop WP. Extensive white matter changes after stereotactic radiosurgery for brain arteriovenous malformations: a prognostic sign for obliteration?. Neurosurgery 2008; 63 (06) 1064-1069 ; discussion 1069–1070