Thromb Haemost 2019; 119(04): 567-575
DOI: 10.1055/s-0039-1678738
Theme Issue Article
Georg Thieme Verlag KG Stuttgart · New York

Endocannabinoid Signalling in Atherosclerosis and Related Metabolic Complications

Raquel Guillamat-Prats
1   Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
,
Martina Rami
1   Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
,
Stephan Herzig
2   Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
3   Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
4   Molecular Metabolic Control, Technical University Munich, Munich, Germany
,
Sabine Steffens
1   Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
5   German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
› Author Affiliations
Funding This work was supported by grants from the Deutsche Forschungsgemeinschaft STE1053/6–1 to S. Steffens, SFB1123 TP B09 to S. Steffens and S. Herzig, and SFB1118 TP A01 to S. Herzig.
Further Information

Publication History

18 October 2018

03 January 2019

Publication Date:
15 February 2019 (online)

Abstract

Endocannabinoids are a group of arachidonic acid-derived lipid mediators binding to cannabinoid receptors CB1 and CB2. An overactivity of the endocannabinoid system plays a pathophysiological role in the development of visceral obesity and insulin resistance. Moreover, elevated circulating endocannabinoid levels are also prevalent in atherosclerosis. The pathophysiological increase of endocannabinoid levels is due to an altered expression of endocannabinoid synthesizing and degrading enzymes induced by inflammatory mediators such as cytokines or lipids. Emerging experimental evidence suggests that enhanced endocannabinoid signalling affects atherosclerosis via multiple effects, including a modulation of vascular inflammation, leukocyte recruitment, macrophage cholesterol metabolism and consequently atherosclerotic plaque stability. In addition, recent findings in various metabolic disease models highlight the relevance of peripheral CB1 cannabinoid receptors in adipose tissue, liver and pancreas, which crucially regulate lipid and glucose metabolism as well as macrophage properties in these organs. This suggests that targeting the endocannabinoid system in the vasculature and peripheral organs might have a therapeutic potential for atherosclerosis by inhibiting vascular inflammation and improving metabolic risk factors. This review will provide a brief update on the effects of endocannabinoid signalling in atherosclerosis and related metabolic complications.

 
  • References

  • 1 Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 2014; 311 (08) 806-814
  • 2 Inoue Y, Qin B, Poti J, Sokol R, Gordon-Larsen P. Epidemiology of obesity in adults: latest trends. Curr Obes Rep 2018; 7 (04) 276-288
  • 3 Finucane MM, Stevens GA, Cowan MJ. , et al; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet 2011; 377 (9765): 557-567
  • 4 Collaboration NRF. ; NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016; 387 (10026): 1377-1396
  • 5 World Health Organization. Obesity and overweight. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  • 6 Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev 2013; 93 (01) 359-404
  • 7 Skinner AC, Perrin EM, Moss LA, Skelton JA. Cardiometabolic risks and severity of obesity in children and young adults. N Engl J Med 2015; 373 (14) 1307-1317
  • 8 Di Marzo V, Matias I. Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005; 8 (05) 585-589
  • 9 Szmitko PE, Verma S. The endocannabinoid system and cardiometabolic risk. Atherosclerosis 2008; 199 (02) 248-256
  • 10 Pacher P, Steffens S. The emerging role of the endocannabinoid system in cardiovascular disease. Semin Immunopathol 2009; 31 (01) 63-77
  • 11 Valenta I, Varga ZV, Valentine H. , et al. Feasibility evaluation of myocardial cannabinoid type 1 receptor imaging in obesity: a translational approach. JACC Cardiovasc Imaging 2018; 11 (2, Pt 2): 320-332
  • 12 van Eenige R, van der Stelt M, Rensen PCN, Kooijman S. Regulation of adipose tissue metabolism by the endocannabinoid system. Trends Endocrinol Metab 2018; 29 (05) 326-337
  • 13 Di Marzo V, Després JP. CB1 antagonists for obesity--what lessons have we learned from rimonabant?. Nat Rev Endocrinol 2009; 5 (11) 633-638
  • 14 Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol 2018; 15 (03) 151-166
  • 15 Console-Bram L, Marcu J, Abood ME. Cannabinoid receptors: nomenclature and pharmacological principles. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38 (01) 4-15
  • 16 Irving A, Abdulrazzaq G, Chan SLF, Penman J, Harvey J, Alexander SPH. Cannabinoid receptor-related Orphan G protein-coupled receptors. Adv Pharmacol 2017; 80: 223-247
  • 17 Sugamura K, Sugiyama S, Nozaki T. , et al. Activated endocannabinoid system in coronary artery disease and antiinflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation 2009; 119 (01) 28-36
  • 18 Engeli S, Böhnke J, Feldpausch M. , et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 2005; 54 (10) 2838-2843
  • 19 Blüher M, Engeli S, Klöting N. , et al. Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes 2006; 55 (11) 3053-3060
  • 20 Côté M, Matias I, Lemieux I. , et al. Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int J Obes 2007; 31 (04) 692-699
  • 21 Quercioli A, Pataky Z, Montecucco F. , et al. Coronary vasomotor control in obesity and morbid obesity: contrasting flow responses with endocannabinoids, leptin, and inflammation. JACC Cardiovasc Imaging 2012; 5 (08) 805-815
  • 22 Quercioli A, Pataky Z, Vincenti G. , et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. Eur Heart J 2011; 32 (11) 1369-1378
  • 23 Cappellano G, Uberti F, Caimmi PP. , et al. Different expression and function of the endocannabinoid system in human epicardial adipose tissue in relation to heart disease. Can J Cardiol 2013; 29 (04) 499-509
  • 24 Pacher P. Cannabinoid CB1 receptor antagonists for atherosclerosis and cardiometabolic disorders: new hopes, old concerns?. Arterioscler Thromb Vasc Biol 2009; 29 (01) 7-9
  • 25 Van Gaal LF, Scheen AJ, Rissanen AM, Rössner S, Hanotin C, Ziegler O. ; RIO-Europe Study Group. Long-term effect of CB1 blockade with rimonabant on cardiometabolic risk factors: two year results from the RIO-Europe Study. Eur Heart J 2008; 29 (14) 1761-1771
  • 26 Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473 (7347): 317-325
  • 27 Li H, Förstermann U. Nitric oxide in the pathogenesis of vascular disease. J Pathol 2000; 190 (03) 244-254
  • 28 Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013; 13 (10) 709-721
  • 29 Tiyerili V, Zimmer S, Jung S. , et al. CB1 receptor inhibition leads to decreased vascular AT1 receptor expression, inhibition of oxidative stress and improved endothelial function. Basic Res Cardiol 2010; 105 (04) 465-477
  • 30 Mukhopadhyay P, Pan H, Rajesh M. , et al. CB1 cannabinoid receptors promote oxidative/nitrosative stress, inflammation and cell death in a murine nephropathy model. Br J Pharmacol 2010; 160 (03) 657-668
  • 31 Dol-Gleizes F, Paumelle R, Visentin V. , et al. Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 2009; 29 (01) 12-18
  • 32 Steffens S, Veillard NR, Arnaud C. , et al. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 2005; 434 (7034): 782-786
  • 33 Zhao Y, Liu Y, Zhang W. , et al. WIN55212-2 ameliorates atherosclerosis associated with suppression of pro-inflammatory responses in ApoE-knockout mice. Eur J Pharmacol 2010; 649 (1–3): 285-292
  • 34 Zhao Y, Yuan Z, Liu Y. , et al. Activation of cannabinoid CB2 receptor ameliorates atherosclerosis associated with suppression of adhesion molecules. J Cardiovasc Pharmacol 2010; 55 (03) 292-298
  • 35 Hoyer FF, Steinmetz M, Zimmer S. , et al. Atheroprotection via cannabinoid receptor-2 is mediated by circulating and vascular cells in vivo. J Mol Cell Cardiol 2011; 51 (06) 1007-1014
  • 36 Netherland CD, Pickle TG, Bales A, Thewke DP. Cannabinoid receptor type 2 (CB2) deficiency alters atherosclerotic lesion formation in hyperlipidemic Ldlr-null mice. Atherosclerosis 2010; 213 (01) 102-108
  • 37 Willecke F, Zeschky K, Ortiz Rodriguez A. , et al. Cannabinoid receptor 2 signaling does not modulate atherogenesis in mice. PLoS One 2011; 6 (04) e19405
  • 38 Rajesh M, Mukhopadhyay P, Bátkai S. , et al. CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiol Heart Circ Physiol 2007; 293 (04) H2210-H2218
  • 39 Rajesh M, Mukhopadhyay P, Haskó G, Huffman JW, Mackie K, Pacher P. CB2 cannabinoid receptor agonists attenuate TNF-alpha-induced human vascular smooth muscle cell proliferation and migration. Br J Pharmacol 2008; 153 (02) 347-357
  • 40 Lenglet S, Thomas A, Soehnlein O. , et al. Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. Arterioscler Thromb Vasc Biol 2013; 33 (02) 215-223
  • 41 Hoyer FF, Khoury M, Slomka H. , et al. Inhibition of endocannabinoid-degrading enzyme fatty acid amide hydrolase increases atherosclerotic plaque vulnerability in mice. J Mol Cell Cardiol 2014; 66: 126-132
  • 42 Molica F, Burger F, Thomas A. , et al. Endogenous cannabinoid receptor CB1 activation promotes vascular smooth-muscle cell proliferation and neointima formation. J Lipid Res 2013; 54 (05) 1360-1368
  • 43 Vujic N, Schlager S, Eichmann TO. , et al. Monoglyceride lipase deficiency modulates endocannabinoid signaling and improves plaque stability in ApoE-knockout mice. Atherosclerosis 2016; 244: 9-21
  • 44 Montecucco F, Di Marzo V, da Silva RF. , et al. The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. Eur Heart J 2012; 33 (07) 846-856
  • 45 Jehle J, Schöne B, Bagheri S. , et al. Elevated levels of 2-arachidonoylglycerol promote atherogenesis in ApoE-/- mice. PLoS One 2018; 13 (05) e0197751
  • 46 Guillamat Prats R, Rami M, Ring L. , et al. Deficiency of monoacylglycerol lipase enhances IgM plasma levels and limits atherogenesis in a CB2-dependent manner. Thromb Haemost 2019; 119 (02) 348-351
  • 47 Grabner GF, Zimmermann R, Schicho R, Taschler U. Monoglyceride lipase as a drug target: at the crossroads of arachidonic acid metabolism and endocannabinoid signaling. Pharmacol Ther 2017; 175: 35-46
  • 48 Schlosburg JE, Blankman JL, Long JZ. , et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci 2010; 13 (09) 1113-1119
  • 49 Taschler U, Eichmann TO, Radner FPW. , et al. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity. Br J Pharmacol 2015; 172 (17) 4419-4429
  • 50 Kinsey SG, Wise LE, Ramesh D. , et al. Repeated low-dose administration of the monoacylglycerol lipase inhibitor JZL184 retains cannabinoid receptor type 1-mediated antinociceptive and gastroprotective effects. J Pharmacol Exp Ther 2013; 345 (03) 492-501
  • 51 Jehle J, Hoyer FF, Schöne B. , et al. Myeloid-specific deletion of diacylglycerol lipase α inhibits atherogenesis in ApoE-deficient mice. PLoS One 2016; 11 (01) e0146267
  • 52 Gao Y, Vasilyev DV, Goncalves MB. , et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 2010; 30 (06) 2017-2024
  • 53 Ryberg E, Larsson N, Sjögren S. , et al. The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 2007; 152 (07) 1092-1101
  • 54 Ross RA. L-α-lysophosphatidylinositol meets GPR55: a deadly relationship. Trends Pharmacol Sci 2011; 32 (05) 265-269
  • 55 Chiurchiù V, Lanuti M, De Bardi M, Battistini L, Maccarrone M. The differential characterization of GPR55 receptor in human peripheral blood reveals a distinctive expression in monocytes and NK cells and a proinflammatory role in these innate cells. Int Immunol 2015; 27 (03) 153-160
  • 56 Lanuti M, Talamonti E, Maccarrone M, Chiurchiù V. Activation of GPR55 receptors exacerbates oxLDL-induced lipid accumulation and inflammatory responses, while reducing cholesterol efflux from human macrophages. PLoS One 2015; 10 (05) e0126839
  • 57 Montecucco F, Bondarenko AI, Lenglet S. , et al. Treatment with the GPR55 antagonist CID16020046 increases neutrophil activation in mouse atherogenesis. Thromb Haemost 2016; 116 (05) 987-997
  • 58 Rinne P, Guillamat-Prats R, Rami M. , et al. Palmitoylethanolamide promotes a proresolving macrophage phenotype and attenuates atherosclerotic plaque formation. Arterioscler Thromb Vasc Biol 2018; 38 (11) 2562-2575
  • 59 Vujic N, Korbelius M, Leopold C. , et al. Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoE-/- mice. Oncotarget 2017; 8 (20) 33122-33136
  • 60 Montecucco F, Matias I, Lenglet S. , et al. Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis. Atherosclerosis 2009; 205 (02) 433-441
  • 61 Chanda D, Kim YH, Li T. , et al. Hepatic cannabinoid receptor type 1 mediates alcohol-induced regulation of bile acid enzyme genes expression via CREBH. PLoS One 2013; 8 (07) e68845
  • 62 Osei-Hyiaman D, DePetrillo M, Pacher P. , et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 2005; 115 (05) 1298-1305
  • 63 Haas MJ, Mazza AD, Wong NC, Mooradian AD. Inhibition of apolipoprotein A-I gene expression by obesity-associated endocannabinoids. Obesity (Silver Spring) 2012; 20 (04) 721-729
  • 64 Ruby MA, Nomura DK, Hudak CS. , et al. Overactive endocannabinoid signaling impairs apolipoprotein E-mediated clearance of triglyceride-rich lipoproteins. Proc Natl Acad Sci U S A 2008; 105 (38) 14561-14566
  • 65 Jiang LS, Pu J, Han ZH, Hu LH, He B. Role of activated endocannabinoid system in regulation of cellular cholesterol metabolism in macrophages. Cardiovasc Res 2009; 81 (04) 805-813
  • 66 Duewell P, Kono H, Rayner KJ. , et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464 (7293): 1357-1361
  • 67 Jourdan T, Godlewski G, Cinar R. , et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 2013; 19 (09) 1132-1140
  • 68 Rayner KJ. Cell death in the vessel wall: the good, the bad, the ugly. Arterioscler Thromb Vasc Biol 2017; 37 (07) e75-e81
  • 69 Freeman-Anderson NE, Pickle TG, Netherland CD, Bales A, Buckley NE, Thewke DP. Cannabinoid (CB2) receptor deficiency reduces the susceptibility of macrophages to oxidized LDL/oxysterol-induced apoptosis. J Lipid Res 2008; 49 (11) 2338-2346
  • 70 Tam J, Vemuri VK, Liu J. , et al. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest 2010; 120 (08) 2953-2966
  • 71 Bowles NP, Karatsoreos IN, Li X. , et al. A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. Proc Natl Acad Sci U S A 2015; 112 (01) 285-290
  • 72 Jourdan T, Szanda G, Rosenberg AZ. , et al. Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy. Proc Natl Acad Sci U S A 2014; 111 (50) E5420-E5428
  • 73 Gruden G, Barutta F, Kunos G, Pacher P. Role of the endocannabinoid system in diabetes and diabetic complications. Br J Pharmacol 2016; 173 (07) 1116-1127
  • 74 Silvestri C, Di Marzo V. Second generation CB1 receptor blockers and other inhibitors of peripheral endocannabinoid overactivity and the rationale of their use against metabolic disorders. Expert Opin Investig Drugs 2012; 21 (09) 1309-1322
  • 75 Kunos G, Osei-Hyiaman D, Bátkai S, Sharkey KA, Makriyannis A. Should peripheral CB(1) cannabinoid receptors be selectively targeted for therapeutic gain?. Trends Pharmacol Sci 2009; 30 (01) 1-7
  • 76 Ruiz de Azua I, Mancini G, Srivastava RK. , et al. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. J Clin Invest 2017; 127 (11) 4148-4162
  • 77 Jourdan T, Park JK, Varga ZV. , et al. Cannabinoid-1 receptor deletion in podocytes mitigates both glomerular and tubular dysfunction in a mouse model of diabetic nephropathy. Diabetes Obes Metab 2018; 20 (03) 698-708