Synthesis 2020; 52(04): 602-608
DOI: 10.1055/s-0039-1690243
paper
© Georg Thieme Verlag Stuttgart · New York

BF3·OEt2-Catalyzed Synthesis of anti-β-(N-Arylamino)-α-hydroxynitriles by Regio- and Diastereospecific Ring Opening of 3-Aryloxirane-2-carbonitriles with Anilines

Chuangchuang Xu
,
Yang Lu
,
Kaini Xu
,
Jiaxi Xu
State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China   Email: [email protected]
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (Nos. 21572017 and 21772010) and the Fundamental Research Funds for the Central Universities (XK1802-6).
Further Information

Publication History

Received: 13 August 2019

Accepted after revision: 15 October 2019

Publication Date:
05 November 2019 (online)


Abstract

A safe and convenient synthetic method to anti-β-(N-arylamino)-α-hydroxynitriles from 3-aryloxirane-2-carbonitriles and anilines was developed under the catalysis of BF3·OEt2 in ethanol. In this method, BF3·OEt2 first reacts with ethanol to produce the true catalyst of super­ acid H[B(OEt)F3], followed by an acid-catalyzed regio- and diastereospecific ring opening of oxirane-2-carbonitriles with anilines, generating anti-β-(N-arylamino)-α-hydroxynitriles. The method features the advantages of non-metal catalysis, short reaction times, and easy operation, and uses an environmentally friendly solvent.

Supporting Information

 
  • References

    • 1a Bracco P, Busch H, von Langermann J, Hanefeld U. Org. Biomol. Chem. 2016; 14: 6375
    • 1b Kurimoto Y, Nasu T, Fujii Y, Asano K, Matsubara S. Org. Lett. 2019; 21: 2156
    • 1c Xing X, Xu C, Chen B, Li C, Virgil SC, Grubbs RH. J. Am. Chem. Soc. 2018; 140: 17782
    • 1d Du ST, Sun Z, Liu W, Liao WW. Org. Lett. 2017; 19: 6598
    • 1e Li Q.-l, Tang S, Zhou D, Tang X.-m. Synth. Commun. 2014; 44: 1600
    • 1f Knapp SM. M, Sherbow TJ, Yelle RB, Zakharov LN, Juliette JJ, Tyler DR. Organometallics 2013; 32: 824
    • 1g Knapp SM. M, Sherbow TJ, Yelle RB, Juliette JJ, Tyler DR. Organometallics 2013; 32: 3744
    • 1h Chang J, Zhang Y. Process Biochem. 2012; 47: 195
  • 2 Xu CC, Xu JX. J. Org. Chem. 2018; 83: 14733
  • 3 Ma Y, Shang C, Yang P, Li L, Zhai Y, Yin Z, Wang B, Shang L. J. Med. Chem. 2018; 61: 10333
    • 4a Sasaki M, Ando M, Kawahata M, Yamaguchi K, Takeda K. Org. Lett. 2016; 18: 1598
    • 4b Wang N, Li L, Li ZL, Yang NY, Guo Z, Zhang HX, Liu XY. Org. Lett. 2016; 18: 6026
    • 4c Ritzen B, van Oers MC, van Delft FL, Rutjes FP. J. Org. Chem. 2009; 74: 7548
    • 4d Kurz T, Widyan K. J. Org. Chem. 2005; 70: 3108
  • 5 Zhai Y, Zhao X, Cui Z, Wang M, Wang Y, Li L, Sun Q, Yang X, Zeng D, Liu Y, Sun Y, Lou Z, Shang L, Yin Z. J. Med. Chem. 2015; 58: 9414
  • 6 Gregory RJ. H. Chem. Rev. 1999; 99: 3649
    • 7a Liu X, Xiang M, Tong Z, Luo F, Chen W, Liu F, Wang F, Yu RQ, Jiang JH. Anal. Chem. 2018; 90: 5534
    • 7b Cioni JP, Doroghazi JR, Ju KS, Yu X, Evans BS, Lee J, Metcalf WW. J. Nat. Prod. 2014; 77: 243
    • 7c Peterson CJ, Tsao R, Coats JR. Pest Manage. Sci. 2000; 56: 615
    • 8a Murtinho D, Serra M. Curr. Organocatal. 2014; 1: 87
    • 8b Sofighaderi S, Setamdideh D. Orient. J. Chem. 2013; 29: 1135
    • 8c Feng X, Chen F.-X. Synlett 2005; 892
    • 8d North M, Usanov DL, Young C. Chem. Rev. 2008; 108: 5146
    • 8e Kurono N, Ohkuma T. ACS Catal. 2016; 6: 989
    • 8f Qin B, Liu X, Shi J, Zheng K, Zhao H, Feng X. J. Org. Chem. 2007; 72: 2374
    • 8g Li Y, He B, Qin B, Feng X, Zhang G. J. Org. Chem. 2004; 69: 7910
    • 8h Zheng S, Yuan X, Wang W, Liang C, Cao F, Zhang R. J. Anal. Toxicol. 2016; 40: 388
  • 9 Cioc RC, Schuckman P, Preschel HD, Vlaar T, Ruijter E, Orru RV. Org. Lett. 2016; 18: 3562
  • 10 Zhang D, Lian M, Liu J, Tang S, Liu G, Ma C, Meng Q, Peng H, Zhu D. Org. Lett. 2019; 21: 2597
    • 11a Sendzik M, Janc JW, Cabuslay R, Honigberg L, Mackman RL, Magill C, Squires N, Waldeck N. Bioorg. Med. Chem. Lett. 2004; 14: 3181
    • 11b Ziora Z, Kasai S, Hidaka K, Nagamine A, Kimura T, Hayashi Y, Kiso Y. Bioorg. Med. Chem. Lett. 2007; 17: 1629
    • 11c Tasic G, Matovic R, Saicic R. J. Serb. Chem. Soc. 2004; 69: 981
    • 11d Hook DF, Gessier F, Noti C, Kast P, Seebach D. ChemBioChem 2004; 5: 691
  • 12 Herranz R, Castro-Pichel J, García-López T. Synthesis 1989; 703
    • 13a Zhou C, Xu JX. Prog. Chem. 2011; 23: 165
    • 13b Li XY, Yang ZY, Xu JX. Curr. Org. Synth. 2013; 10: 169
    • 13c Zhou C, Xu JX. Prog. Chem. 2012; 24: 338
    • 13d Ma LG, Xu JX. Prog. Chem. 2004; 16: 220
    • 13e Li SQ, Chen XP, Xu JX. Tetrahedron 2018; 74: 1613
    • 13f Dong J, Du HG, Xu JX. J. Org. Chem. 2019; 84: 10724
    • 13g Wan NW, Tian JW, Zhou XY, Wang HH, Cui BD, Han WY, Chen YZ. Adv. Synth. Catal. 2019; 361: 4651
    • 13h Remete AM, Kiss L. Eur. J. Org. Chem. 2019; 5574
    • 13i Ondari ME, Klosin J, Froese RD. J, Kruper WR, MacDonald J, Arriola DJ, Bell BM, Briggs JR, Kruper WJ. J. Org. Chem. 2019; 84: 4715
    • 13j Liu JW, Yao HQ, Wang C. ACS Catal. 2018; 8: 9376
    • 13k Yu Y, Zhu YL, Bhagat MN, Raghuraman A, Hirsekorn KF, Notestein JM, Nguyen ST, Broadbelt LJ. ACS Catal. 2018; 8: 11119