CC BY-ND-NC 4.0 · SynOpen 2019; 03(03): 77-90
DOI: 10.1055/s-0039-1690686
short review
Copyright with the author(s) (2019) The author(s)

Catalytic Enantioselective Approaches to the oxa-Pictet–Spengler Cyclization and Other 3,6-Dihydropyran-Forming Reactions

Zhengbo Zhu
a   Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA   eMail: seidel@chem.ufl.edu
,
Alafate Adili
a   Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA   eMail: seidel@chem.ufl.edu
,
b   Department of Chemistry, University of California–Berkeley; Materials Sciences Division, Lawrence Berkeley National Laboratory; Kavli Energy NanoSciences Institute at Berkeley; Berkeley Global Science Institute, Berkeley, California 94720, USA
,
Daniel Seidel
a   Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA   eMail: seidel@chem.ufl.edu
› Institutsangaben
This material is based upon work supported by the National Science Foundation under grant CHE–1856613.
Weitere Informationen

Publikationsverlauf

Received: 24. August 2019

Accepted after revision: 04. September 2019

Publikationsdatum:
25. September 2019 (online)


Abstract

This Short Review provides an analysis of the state-of-the-art in catalytic enantioselective oxa-Pictet–Spengler cyclizations. Also discussed are other catalytic reactions providing access to enantio­enriched isochromans and tetrahydropyrano[3,4-b]indoles. Context is provided and remaining challenges are highlighted.

 
  • References and Notes

  • 1 Zhou YB, Wang J.-H, Li XM, Fu XC, Yan Z, Zeng YM, Li X. J. Asian Nat. Prod. Res. 2008; 10: 827
    • 2a Trisuwan K, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Preedanon S, Sakayaroj J. Tetrahedron 2010; 66: 4484
    • 2b Kuramochi K, Tsubaki K, Kuriyama I, Mizushina Y, Yoshida H, Takeuchi T, Kamisuki S, Sugawara F, Kobayashi S. J. Nat. Prod. 2013; 76: 1737
  • 3 Yan Y.-M, Dai H.-Q, Du Y, Schneider B, Guo H, Li D.-P, Zhang L.-X, Fu H, Dong X.-P, Cheng Y.-X. Bioorg. Med. Chem. Lett. 2012; 22: 4179
  • 4 Zhang L, Zhu X, Zhao B, Zhao J, Zhang Y, Zhang S, Miao J. Vasc. Pharmacol. 2008; 48: 63
  • 5 Ennis MD, Ghazal NB, Hoffman RL, Smith MW, Schlachter SK, Lawson CF, Im WB, Pregenzer JF, Svensson KA, Lewis RA, Hall ED, Sutter DM, Harris LT, McCall RB. J. Med. Chem. 1998; 41: 2180
    • 6a Demerson CA, Humber LG, Philipp AH, Martel RR. J. Med. Chem. 1976; 19: 391
    • 6b Brenna E, Fuganti C, Fuganti D, Grasselli P, Malpezzi L, Pedrocchi-Fantoni G. Tetrahedron 1997; 53: 17769
  • 7 Katz AH, Demerson CA, Shaw CC, Asselin AA, Humber LG, Conway KM, Gavin G, Guinosso C, Jensen NP. J. Med. Chem. 1988; 31: 1244
  • 8 Howe AY. M, Bloom J, Baldick CJ, Benetatos CA, Cheng H, Christensen JS, Chunduru SK, Coburn GA, Feld B, Gopalsamy A, Gorczyca WP, Herrmann S, Johann S, Jiang X, Kimberland ML, Krisnamurthy G, Olson M, Orlowski M, Swanberg S, Thompson I, Thorn M, Del Vecchio A, Young DC, van Zeijl M, Ellingboe JW, Upeslacis J, Collett M, Mansour TS, O’Connell JF. Antimicrob. Agents Chemother. 2004; 48: 4813

    • For reviews on the oxa-Pictet–Spengler reaction, see:
    • 9a Larghi EL, Kaufman TS. Synthesis 2006; 187
    • 9b Larghi EL, Kaufman TS. Eur. J. Org. Chem. 2011; 5195
    • 9c Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
  • 10 For a very brief summary of this topic (in Japanese), see: Kawato Y. J. Synth. Org. Chem. Jpn. 2017; 75: 673
  • 11 Pictet A, Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030

    • Selected reviews on the Pictet–Spengler reaction:
    • 12a Cox ED, Cook JM. Chem. Rev. 1995; 95: 1797
    • 12b Youn SW. Org. Prep. Proced. Int. 2006; 38: 505
    • 12c Lorenz M, Van Linn ML, Cook JM. Curr. Org. Synth. 2010; 7: 189
    • 12d Stockigt J, Antonchick AP, Wu FR, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
    • 12e Glinsky-Olivier N, Guinchard X. Synthesis 2017; 49: 2605
    • 12f Rao RN, Maiti B, Chanda K. ACS Comb. Sci. 2017; 19: 199
    • 13a Buschmann H, Michel R. German Patent 614461, 1935
    • 13b Buschmann H, Michel R. German Patent 617646, 1935
  • 14 Wünsch B, Zott M. Liebigs Ann. Chem. 1992; 39
  • 15 For an early review on the chemistry of isochromans, see: Markaryan EA, Samodurova AG. Russ. Chem. Rev. 1989; 58: 479
  • 16 Zeng M, You S.-L. Synlett 2010; 1289
  • 17 Liu L, Kaib PS. J, Tap A, List B. J. Am. Chem. Soc. 2016; 138: 10822
  • 18 Costa PR. R, Cabral LM, Alencar KG, Schmidt LL, Vasconcellos ML. A. A. Tetrahedron Lett. 1997; 38: 7021
  • 19 For a review on tryptophol and its derivatives, see: Palmieri A, Petrini M. Nat. Prod. Rep. 2019; 36: 490
  • 20 Fernandes RA, Brückner R. Synlett 2005; 1281
  • 21 Eey ST.-C, Lear MJ. Chem. Eur. J. 2014; 20: 11556
  • 22 Wang P, Zhao J.-Z, Li H.-F, Liang X.-M, Zhang Y.-L, Da C.-S. Tetrahedron Lett. 2017; 58: 129
  • 23 Doyle AG. Ph.D. Thesis . Harvard University; Cambridge: 2008

    • Selected reviews on hydrogen bonding catalysis:
    • 24a Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
    • 24b Takemoto Y. Org. Biomol. Chem. 2005; 3: 4299
    • 24c Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 24d Connon SJ. Chem. Eur. J. 2006; 12: 5418
    • 24e Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 24f Yu X, Wang W. Chem. Asian J. 2008; 3: 516
    • 24g Hydrogen Bonding in Organic Synthesis . Pihko PM. Wiley-VCH; Weinheim: 2009
    • 24h Schenker S, Zamfir A, Freund M, Tsogoeva SB. Eur. J. Org. Chem. 2011; 2209
    • 24i Auvil TJ, Schafer AG, Mattson AE. Eur. J. Org. Chem. 2014; 2633
    • 24j Žabka M, Šebesta R. Molecules 2015; 20: 15500
    • 24k Nishikawa Y. Tetrahedron Lett. 2018; 59: 216
    • 24l Reep C, Sun S, Takenaka N. Asian J. Org. Chem. 2019; 8: 1306
  • 26 Lombardo VM, Thomas CD, Scheidt KA. Angew. Chem. Int. Ed. 2013; 52: 12910

    • Selected reviews on asymmetric Brønsted acid catalysis:
    • 27a Yamamoto H, Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924
    • 27b Akiyama T. Chem. Rev. 2007; 107: 5744
    • 27c Terada M. Synthesis 2010; 1929
    • 27d Rueping M, Nachtsheim BJ, Ieawsuwan W, Atodiresei I. Angew. Chem. Int. Ed. 2011; 50: 6706
    • 27e Yu J, Shi F, Gong LZ. Acc. Chem. Res. 2011; 44: 1156
    • 27f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 27g Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
    • 27h Rueping M, Parmar D, Sugiono E. Asymmetric Brønsted Acid Catalysis . Wiley-VCH; Weinheim: 2015
    • 27i Mitra R, Niemeyer J. ChemCatChem 2018; 10: 1221
    • 27j Sedgwick DM, Grayson MN, Fustero S, Barrio P. Synthesis 2018; 50: 1935
  • 28 Ascic E, Ohm RG, Petersen R, Hansen MR, Hansen CL, Madsen D, Tanner D, Nielsen TE. Chem. Eur. J. 2014; 20: 3297
  • 29 Zhao C, Chen SB, Seidel D. J. Am. Chem. Soc. 2016; 138: 9053

    • For reviews on iminium catalysis, see:
    • 30a Erkkilae A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
    • 30b Brazier JB, Tomkinson NC. O. In Asymmetric Organocatalysis . List B. Springer; Berlin: 2010: 281
  • 31 Das S, Liu L, Zheng Y, Alachraf MW, Thiel W, De C K, List B. J. Am. Chem. Soc. 2016; 138: 9429
  • 32 Maskeri MA, O’Connor MJ, Jaworski AA, Davies AV, Scheidt KA. Angew. Chem. Int. Ed. 2018; 57: 17225
  • 33 Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
  • 34 For the first report describing catalytic enantioselective additions to oxocarbenium ions, see: Braun M, Kotter W. Angew. Chem. Int. Ed. 2004; 43: 514
  • 36 Dasgupta S, Rivas T, Watson MP. Angew. Chem. Int. Ed. 2015; 54: 14154
  • 37 Meng Z, Sun S, Yuan H, Lou H, Liu L. Angew. Chem. Int. Ed. 2014; 53: 543
  • 38 While not catalytic, enantioselective modification of parent isochroman had previously been achieved by deprotonation with t-BuLi in the presence of superstoichiometric amounts of a chiral ligand, followed by treatment with various electrophiles, see: Tomooka K, Wang L.-F, Okazaki F, Nakai T. Tetrahedron Lett. 2000; 41: 6121
  • 39 Catalytic enantioselective additions of boronic acids to structurally related chrome acetals are significantly more developed. See, for example: Moquist PN, Kodama T, Schaus SE. Angew. Chem. Int. Ed. 2010; 49: 7096
  • 40 Wan M, Sun S, Li Y, Liu L. Angew. Chem. Int. Ed. 2017; 56: 5116
  • 41 Li Y, Wan M, Sun S, Fu Z, Huang H, Liu L. Org. Chem. Front. 2018; 5: 1280
  • 42 Lu R, Li Y, Zhao J, Li J, Wang S, Liu L. Chem. Commun. 2018; 54: 4445
  • 44 Ammann SE, Liu W, White MC. Angew. Chem. Int. Ed. 2016; 55: 9571
  • 45 Liu S, Nakajima K, Nishibayashi Y. RSC Adv. 2019; 9: 18918
  • 46 Ravindra B, Maity S, Das BG, Ghorai P. J. Org. Chem. 2015; 80: 7008
  • 47 Chung YK, Fu GC. Angew. Chem. Int. Ed. 2009; 48: 2225
  • 48 Zhang J.-W, Cai Q, Shi X.-X, Zhang W, You S.-L. Synlett 2011; 1239
  • 49 Cai Q, Zhao Z.-A, You S.-L. Angew. Chem. Int. Ed. 2009; 48: 7428
  • 50 Chen J, Han X, Lu X. Angew. Chem. Int. Ed. 2017; 56: 14698