Synthesis 2020; 52(01): 69-74
DOI: 10.1055/s-0039-1690712
paper
© Georg Thieme Verlag Stuttgart · New York

Chlorination of Arylaldehyde-Derived Arylsulfonylhydrazones with N-Chlorosuccinimide Leading to 1,2,4,5-Tetrazine Derivatives

Yuan-Zhao Ji
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
,
Hui-Jing Li
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
b   Weihai Institute of Marine Biomedical Industrial Technology, Wendeng District, Weihai 264400, P. R. of China   eMail: lihuijing@iccas.ac.cn   eMail: ycwu@iccas.ac.cn
,
Ying Liu
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
b   Weihai Institute of Marine Biomedical Industrial Technology, Wendeng District, Weihai 264400, P. R. of China   eMail: lihuijing@iccas.ac.cn   eMail: ycwu@iccas.ac.cn
,
Yan-Chao Wu
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
b   Weihai Institute of Marine Biomedical Industrial Technology, Wendeng District, Weihai 264400, P. R. of China   eMail: lihuijing@iccas.ac.cn   eMail: ycwu@iccas.ac.cn
› Institutsangaben
This work was supported by the Key Research and Development Program of Shandong Province (2019GSF108089), the Natural Science Foundation of Shandong Province (ZR2019MB009), the National Natural Science Foundation of China (21672046, 21372054), and with funding from the Huancui District of Weihai City.
Weitere Informationen

Publikationsverlauf

Received: 21. Juli 2019

Accepted after revision: 24. September 2019

Publikationsdatum:
14. Oktober 2019 (online)


Abstract

It has been reported previously that treatment of aryl­ketone-derived arylsulfonylhydrazones with NXS/(nBu)4NX affords exclusively vinyl halides. In contrast, we have found that treatment of aryl­aldehyde-derived arylsulfonylhydrazones with N-chlorosuccinimide in the presence of potassium hydroxide affords 1,2,4,5-tetrazine derivatives in good to excellent yields. The present reactions are carried out under metal-free and mild reaction conditions.

Supporting Information

 
  • References

    • 2a Hwang DK, Dasari RR, Fenoll M, Alain-Rizzo V, Dindar A, Shim JW, Deb N, Fuentes-Hernandez C, Barlow S, Bucknall DG, Audebert P, Marder SR, Kippelen B. Adv. Mater. 2012; 24: 4445
    • 2b Li Z, Ding J, Song N, Du X, Zhou J, Lu J, Tao Y. Chem. Mater. 2011; 23: 1977
    • 2c Li Z, Ding J, Song N, Lu J, Tao Y. J. Am. Chem. Soc. 2010; 132: 13160
    • 3a Tang J, Chen D, Zhang G, Yang H, Cheng G. Synlett 2019; 30: 885
    • 3b Chen D, Yang H, Yi Z, Xiong H, Zhang L, Zhu S, Cheng G. Angew. Chem. Int. Ed. 2018; 57: 2081
    • 3c Chavez DE, Parrish DA, Mitchell L, Imler GH. Angew. Chem. Int. Ed. 2017; 56: 3575
    • 3d Chavez DE, Parrish DA, Mitchell L. Angew. Chem. Int. Ed. 2016; 55: 8666
    • 3e Zhang Q, He C, Yin P, Shreeve JM. Chem. Asian J. 2014; 9: 212
    • 3f Wei H, Gao H, Shreeve JM. Chem. Eur. J. 2014; 20: 16943
    • 3g Gao H, Shreeve JM. Chem. Rev. 2011; 111: 7377
    • 4a Tempas CD, Morris TW, Wisman DL, Le D, Din NU, Williams CG, Wang M, Polezhaev AV, Rahman TS, Caulton KG, Tait SL. Chem. Sci. 2018; 9: 1674
    • 4b Dolinar BS, Alexandropoulos DI, Vignesh KR, James T, Dunbar KR. J. Am. Chem. Soc. 2018; 140: 908
    • 4c Lemes MA, Brunet G, Pialat A, Ungur L, Korobkova I, Murugesu M. Chem. Commun. 2017; 53: 8660
    • 4d Alexandropoulos DI, Dolinar BS, Vignesh KR, Dunbar KR. J. Am. Chem. Soc. 2017; 139: 11040
    • 4e Woods TJ, Ballesteros-Rivas MF, Ostrovsky SM, Palii AV, Reu OS, Klokishner SI, Dunbar KR. Chem. Eur. J. 2015; 21: 10302
    • 5a Audebert P, Miomandre F. Chem. Sci. 2013; 4: 575
    • 5b Quinton C, Alain-Rizzo V, Dumas-Verdes C, Clavier G, Miomandre F, Audebert P. Eur. J. Org. Chem. 2012; 1394
    • 5c Miomandre F, Meallet-Renault R, Vachon JJ, Pansu RB, Audebert P. Chem. Commun. 2008; 1913
    • 5d Kim Y, Kim E, Clavier G, Audebert P. Chem. Commun. 2006; 3612
    • 6a Karaki F, Ohgane K, Imai H, Itoh K, Fujii H. Eur. J. Org. Chem. 2017; 3815
    • 6b Adib M, Soheilizad M, Zhu LG, Wu J. Synlett 2015; 26: 177
    • 6c Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW. J. Am. Chem. Soc. 2012; 134: 10317
    • 6d Zeng Z, Hyer WS, Twamley B, Shreeve JM. Synthesis 2008; 1775
    • 6e Müller J, Troschütz R. Synthesis 2006; 1513
    • 6f Hamasaki A, Zimpleman JM, Hwang I, Boger DL. J. Am. Chem. Soc. 2005; 127: 10767
    • 6g Boger DL, Hong J. J. Am. Chem. Soc. 2001; 123: 8515
    • 7a Proverbio M, Procopio EQ, Panigati M, Mercurio S, Pennati R, Ascagni M, Leone R, Porta CL, Sugni M. Org. Biomol. Chem. 2019; 17: 509
    • 7b Wu H, Devaraj NK. Acc. Chem. Res. 2018; 51: 1249
    • 7c Oliveira BL, Bernardes GJ. L. Chem. Soc. Rev. 2017; 46: 4895
    • 7d Wu H, Devaraj NK. Top. Curr. Chem. 2016; 374: 3
    • 7e Oliveira BL, Guo Z, Boutureira O, Guerreiro A, Jiménez-Osés G, Bernardes GJ. L. Angew. Chem. Int. Ed. 2016; 55: 14683
    • 7f Maggi A, Ruivo E, Fissers J, Vangestel C, Chatterjee S, Joossens J, Sobott F, Staelens S, Stroobants S, Van Der Veken P, Wyffels L, Augustyns K. Org. Biomol. Chem. 2016; 14: 7544
    • 7g Wieczorek A, Werther P, Euchner J, Wombacher R. Chem. Sci. 2017; 8: 1506
    • 7h Wu H, Yang J, Šečkutė J, Devaraj NK. Angew. Chem. Int. Ed. 2014; 53: 5805
    • 7i Devaraj NK, Weissleder R, Hilderbrand SA. Bioconjugate Chem. 2008; 19: 2297
    • 8a Mao W, Shi W, Li J, Su D, Wang X, Zhang L, Pan L, Wu X, Wu H. Angew. Chem. Int. Ed. 2019; 58: 1106
    • 8b Li C, Ge H, Yin B, She M, Liu P, Lia X, Li J. RSC Adv. 2015; 5: 12277
    • 8c Yang J, Karver MR, Li W, Sahu S, Devaraj NK. Angew. Chem. Int. Ed. 2012; 51: 5222
    • 8d Bowie RA, Gardner MD, Neilson DG, Watson KM, Mahmood S, Ridd V. J. Chem. Soc., Perkin Trans. 1 1972; 2395
    • 9a Qu Y, Sauvage FX, Clavier G, Miomandre F, Audebert P. Angew. Chem. Int. Ed. 2018; 57: 12057
    • 9b Fang Z, Hu WL, Liu DY, Yua CY, Hu XG. Green Chem. 2017; 19: 1299
    • 9c Lv LP, Zhou XF, Shi HB, Gao JR, Hu WX. J. Chem. Res. 2014; 38: 368
    • 9d Liu H, Wei Y. Tetrahedron Lett. 2013; 54: 4645
    • 9e Pican S, Lapinte V, Pilard JF, Pasquinet E, Beller L, Fontaine L, Poullain D. Synlett 2009; 731
    • 9f Hu WX, Lv LP, Xu F, Shi HB. J. Chem. Res. 2006; 324
    • 9g Benassuti LD, Garanti L, Molteni G. Tetrahedron 2004; 60: 4627
    • 10a Arunprasath D, Bala BD, Sekar G. Adv. Synth. Catal. 2019; 361: 1172
    • 10b Wang H, Deng YH, Shao Z. Synthesis 2018; 50: 2281
    • 10c Qiu D, Mo F, Zhang Y, Wang J. Adv. Organomet. Chem. 2017; 67: 151
    • 10d Jadhav AP, Ray D, Rao VU. B, Singh RP. Eur. J. Org. Chem. 2016; 2369
    • 10e Mao S, Gao YR, Zhu XQ, Guo DD, Wang YQ. Org. Lett. 2015; 17: 1692
    • 10f Xu K, Shen C, Shan S. Chin. J. Org. Chem. 2015; 35: 294
    • 10g Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
    • 10h Zhang Y, Wang J. Top. Curr. Chem. 2012; 327: 239
    • 10i Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
    • 10j Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 11a Wang JL, Li HJ, Wu YC. J. Org. Chem. 2018; 83: 8716
    • 11b Wang HS, Li HJ, Zhang ZG, Wu YC. Eur. J. Org. Chem. 2018; 915
    • 11c Wang H.-S, Li H.-J, Nan X, Luo Y.-Y, Wu Y.-C. J. Org. Chem. 2017; 82: 12914
    • 11d Wu QX, Li HJ, Wang HS, Zhang ZG, Wang CC, Wu YC. Synlett 2015; 26: 243
    • 12a Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
    • 12b Chen Z, Liu Z, Cao G, Li H, Ren H. Adv. Synth. Catal. 2017; 359: 202
    • 12c Sha Q, Liu H, Wei Y. Eur. J. Org. Chem. 2014; 7707
  • 13 Ojha DP, Prabhu KR. Org. Lett. 2015; 17: 18
  • 14 CCDC 1939331 (2c) and CCDC 1939330 (2e) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.