RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2020; 52(02): 281-289
DOI: 10.1055/s-0039-1690731
DOI: 10.1055/s-0039-1690731
paper
Efficient Synthesis of Diarylmethylamines via Lewis Acid Catalyzed Friedel–Crafts Reactions of Donor–Acceptor Aziridines with N,N-Dialkylanilines
Authors
This research was supported by the Nanomaterial Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2012M3A7B4049645) and the Basic Science Research Program through NRF funded by the Ministry of Education (NRF-2016R1D1A1A09916621), and by Kyonggi University's Graduate Research Assistant Fellowship 2019.
Weitere Informationen
Publikationsverlauf
Received: 02. August 2019
Accepted after revision: 08. Oktober 2019
Publikationsdatum:
29. Oktober 2019 (online)


Abstract
A method for efficient and mild synthesis of diarylmethylamine scaffold, via Lewis acid catalyzed Friedel–Crafts reaction of donor–acceptor aziridines with N,N-dialkylanilines to afford a biologically important diarylmethylamine derivatives in high yields (up to 88%), is presented. This reaction is suitable for the synthesis of various diarylmethylamine derivatives and has a broad scope for electron-rich arenes, including dimethoxybenzene.
Key words
diarylmethylamine - Friedel–Crafts reaction - donor–acceptor aziridine - N,N-dialkylaniline - Lewis acidSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1690731.
- Supporting Information (PDF)
-
References
- 1a Mouridsen H, Gershanovich M, Sun Y, Pérez-Carriòn R, Boni C, Monnier A, Apffelstaedt J, Smith R, Sleeboom HP, Jaenicke F, Pluzanska A, Dank M, Becquart D, Bapsy PP, Salminen E, Snyder R, Chaudri-Ross H, Lang R, Wyld P, Bhatnagar A. J. Clin. Oncol. 2003; 21: 2101
- 1b Rogawski MA, Löscher W. Nat. Rev. Neurosci. 2004; 5: 553
- 1c Curran MP, Scott LJ, Perry CM. Drugs 2004; 64: 523
- 1d Ayala GX, Tapia R. Eur. J. Neurosci. 2005; 22: 3067
- 1e Naito R, Yonetoku Y, Okamoto Y, Toyoshima A, Ikeda K, Takeuchi M. J. Med. Chem. 2005; 48: 6597
- 2a Dastbaravardeh N, Schnürch M, Mihovilovic MD. Org. Lett. 2012; 14: 1930
- 2b Muramatsu W, Nakano K, Li C.-J. Org. Lett. 2013; 15: 3650
- 2c Kumar NY. P, Jeyachandran R, Ackermann L. J. Org. Chem. 2013; 78: 4145
- 2d Beisel T, Manolikakes G. Org. Lett. 2013; 15: 6046
- 2e Barham JP, John MP, Murphy JA. Beilstein J. Org. Chem. 2014; 10: 2981
- 2f Sakai N, Hori H, Yoshida Y, Konakahara T, Ogiwara Y. Tetrahedron 2015; 71: 4722
- 2g Fernández-Salas JA, Marelli E, Nolan SP. Chem. Sci. 2015; 6: 4973
- 2h Hussain N, Kim B.-S, Walsh PJ. Chem. Eur. J. 2015; 21: 11010
- 2i Li M, Yucel B, Jiménez J, Rotella M, Fu Y, Walsh PJ. Adv. Synth. Catal. 2016; 358: 1910
- 2j Ando Y, Kamatsuka T, Shinokubo H, Miyake Y. Chem. Commun. 2017; 53: 9136
- 2k Chen M, Han Y, Ma D, Wang Y, Lai Z, Sun J. Chin. J. Chem. 2018; 36: 587
- 2l Ide T, Barham JP, Fujita M, Kawato Y, Egami H, Hamashima Y. Chem. Sci. 2018; 9: 8453
- 2m Kramer S. Org. Lett. 2019; 21: 65
- 3a Tokunaga N, Otomaru Y, Okamoto K, Ueyama K, Shintani R, Hayashi T. J. Am. Chem. Soc. 2004; 126: 13584
- 3b Duan H.-F, Jia Y.-X, Wang L-X, Zhou Q.-L. Org. Lett. 2006; 8: 2567
- 3c Jagt RB. C, Toullec PY, Geerdink D, de Vries JG, Feringa BL, Minnaard AJ. Angew. Chem. Int. Ed. 2006; 45: 2789
- 3d Wang Z.-Q, Feng C.-G, Xu M.-H, Lin G.-Q. J. Am. Chem. Soc. 2007; 129: 5336
- 3e Shao C, Yu H.-J, Wu N.-Y, Feng C.-G, Lin G.-Q. Org. Lett. 2010; 12: 3820
- 3f Sieber JD, Chennamadhavuni D, Fandrick KR, Qu B, Han ZS, Savoie J, Ma S, Samankumara LP, Grinberg N, Lee H, Song JJ, Senanayake CH. Org. Lett. 2014; 16: 5494
- 3g Chen C.-C, Gopula B, Syu J.-F, Pan J.-H, Kuo T.-S, Wu P.-Y, Henschke JP, Wu H.-L. J. Org. Chem. 2014; 79: 8077
- 3h Yasukawa T, Kuremoto T, Miyamura H, Kobayashi S. Org. Lett. 2016; 18: 2716
- 4a Pineschi M, Bertolini F, Crotti P, Macchia F. Org. Lett. 2006; 8: 2627
- 4b Wang Z, Sun X, Wu J. Tetrahedron 2008; 64: 5013
- 4c Huang CY, Doyle AG. J. Am. Chem. Soc. 2013; 135: 13605
- 4d Duda ML, Michael FE. J. Am. Chem. Soc. 2013; 135: 18347
- 4e Takeda Y, Ikeda Y, Kuroda A, Tanaka S, Minakata S. J. Am. Chem. Soc. 2014; 136: 8544
- 5a Yadav JS, Reddy BV. S, Rao RS, Veerendhar G, Nagaiah K. Tetrahedron Lett. 2001; 42: 8067
- 5b Sun X, Sun W, Fan R, Wu J. Adv. Synth. Catal. 2007; 349: 2151
- 5c Bera M, Roy S. Tetrahedron Lett. 2007; 48: 7144
- 5d Wang Z, Sun X, Wu J. Tetrahedron 2008; 64: 5013
- 5e Bera M, Roy S. J. Org. Chem. 2010; 75: 4402
- 5f Ghorai MK, Tiwari DP, Jain N. J. Org. Chem. 2013; 78: 7121
- 6a Kim A, Kim S.-G. Eur. J. Org. Chem. 2015; 6419
- 6b Sin S, Kim S.-G. Adv. Synth. Catal. 2016; 358: 2701
- 6c Lee SG, Sin S, Kim S, Kim S.-G. Tetrahedron Lett. 2018; 59: 1480
- 6d Lee SG, Kim S.-G. Tetrahedron 2018; 74: 3671
- 6e Lee SG, Kim S.-G. Tetrahedron 2019; 75: 324
- 6f Kim S, Kim S.-G. Asian J. Org. Chem. 2019; 8
- 7a Jiang Z, Wang J, Lu P, Wang Y. Tetrahedron 2011; 67: 9609
- 7b Li L, Zhang J. Org. Lett. 2011; 13: 5940
- 7c Li L, Wu X, Zhang J. Chem. Commun. 2011; 47: 5049
- 7d Wu X, Li L, Zhang J. Chem. Commun. 2011; 47: 7824
- 7e Ghosh A, Pandey AK, Banerjee P. J. Org. Chem. 2015; 80: 7235
- 7f Wang B, Liang M, Tang J, Deng Y, Zhao J, Sun H, Tung C.-H, Jia J, Xu Z. Org. Lett. 2016; 18: 4614
- 7g Liao Y, Liu X, Zhang Y, Xu Y, Xia Y, Lin L, Feng X. Chem. Sci. 2016; 7: 3775
- 7h Wu X, Zhou W, Wu H.-H, Zhang J. Chem. Commun. 2017; 53: 5661
- 7i Liao Y, Zhou B, Xia Y, Liu X, Lin L, Feng X. ACS Catal. 2017; 7: 3934
- 8a Liu H, Zheng C, You S.-L. J. Org. Chem. 2014; 79: 1047
- 8b Xu Y, Chang F, Cao W, Liu X, Feng X. ACS Catal. 2018; 8: 10261
- 9 Wu X, Li L, Zhang J. Adv. Synth. Catal. 2012; 354: 3485
For recent examples on the synthesis of diarylmethylamines, see:
For recent examples on the synthesis of diarylmethylamines through arylation of aldimines, see:
For examples of ring-opening of 2-arylaziridines with aryl nucleophiles, see:
For examples of Friedel–Crafts reaction of 2-arylaziridines with electron-rich arenes, see:
For selective recent examples on cycloadditions of D–A aziridines, see:
For recent examples on alkylation of indoles with D–A aziridines, see: