Synlett 2020; 31(01): 1-6
DOI: 10.1055/s-0039-1690748
synpacts
© Georg Thieme Verlag Stuttgart · New York

Multiple Coordination in Porphyrinoid Hybrid: Changing the Delocalization within the Extended π-System

The author thanks the National Science Centre, Poland (Narodowe Centrum Nauki, Poland, Grant Number 2015/17/B/ST5/01437) for financial support.
Further Information

Publication History

Received: 20 September 2019

Accepted after revision: 29 October 2019

Publication Date:
25 November 2019 (online)


Abstract

π-Extended and strongly coupled chromophores are constantly explored because of their potential for finding a place in many fields of research focusing on both aspects – the fundamental knowledge and the application studies. The synthetic approach leading to controlled formation of porphyrinoid system with two coordination cores shows an alternative way for controlling the delocalization within the extended π-system. It drastically influences the optic response which after a basic initiator (reversibly) shifts the absorbance to the red region following the significant planarization that increases observed communication between two subunits. Even deeper modification can be done within the system by doping the obtained structure with boron(III) that in addition introduces another switching factor based on Lewis acidity of the introduced metalloid.

 
  • References

    • 1a Pawlicki M, Morisue M, Davis NK. S, McLean DG, Haley JH, Beuerman E, Drobizhev M, Rebane A, Thompson AL, Pascu SI, Accorsi G, Armaroli N, Anderson HL. Chem. Sci. 2012; 3: 1541
    • 2a Wang X.-Y, Yao X, Narita A, Müllen K. Acc. Chem. Res. 2019; 52: 2491
    • 2b Stępień M, Gońka E, Żyła M, Sprutta N. Chem. Rev. 2017; 117: 3479
    • 2c Hirai M, Tanaka N, Sakai M, Yamaguchi S. Chem. Rev. 2019; 119: 8291
    • 3a Saito S, Matsuo K, Yamaguchi S. J. Am. Chem. Soc. 2012; 134: 9130
    • 3b Dou C, Saito S, Matsuo K, Hisaki I, Yamaguchi S. Angew. Chem. Int. Ed. 2012; 51: 12206
    • 3c Osumi S, Saito S, Dou C, Matsuo K, Kume K, Yoshikawa H, Awaga K, Yamaguchi S. Chem. Sci. 2016; 7: 219
    • 4a Freudenberg J, Bunz UH. F. Acc. Chem. Res. 2019; 52: 1575
    • 4b Hammer N, Schaub TA, Meinhardt U, Kivala M. Chem. Rec. 2015; 15: 1119
    • 4c Żyła M, Gońka E, Chmielewski PJ, Cybińska J, Stępień M. Chem. Sci. 2016; 7: 286
    • 4d Burrezo PM, Zeng W, Moos M, Holzapfel M, Canola S, Negri F, Rovira C, Veciana J, Phan H, Wu J, Lambert C, Casado J. Angew. Chem. Int. Ed. 2019; 58: 14467
    • 4e Chow CH. E, Han Y, Phan H, Wu J. Chem. Commun. 2019; 55: 9100
  • 5 Pawlicki M, Latos-Grażyński L. Chem. Asian J. 2015; 10: 1438
  • 6 Klajn J, Stawski W, Chmielewski PJ, Cybińska J, Pawlicki M. Chem. Commun. 2019; 55: 4588
  • 7 Fujimoto K, Oh J, Yorimitsu H, Kim D, Osuka A. Angew. Chem. Int. Ed. 2016; 55: 3196
    • 8a Kato K, Osuka A. Angew. Chem. Int. Ed. 2019; 58: 8546
    • 8b Shimizu D, Ide Y, Ikeue T, Osuka A. Angew. Chem. Int. Ed. 2019; 58: 5023
    • 8c Fujimoto K, Osuka A. Chem. Eur. J. 2018; 24: 6530
    • 8d Shimizu D, Osuka A. Angew. Chem. Int. Ed. 2018; 57: 3733
    • 8e Fukui N, Cha W, Shimizu D, Oh J, Furukawa K, Yorimitsu H, Kim D, Osuka A. Chem. Sci. 2017; 8: 189
    • 8f Fukui N, Cha W.-Y, Lee S, Tokuji S, Kim D, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2013; 52: 9728
    • 8g Nowak-Król A, Gryko DT. Org. Lett. 2013; 15: 5618
    • 9a Pawlicki M, Hurej K, Kwiecińska K, Szterenberg L, Latos-Grażyński L. Chem. Commun. 2015; 51: 11362
    • 9b Hurej K, Stawski W, Latos-Grażyński L, Pawlicki M. Chem. Asian J. 2016; 11: 1139
    • 10a Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor M.-J, Schaub R, Bettinger HF. Angew. Chem. Int. Ed. 2015; 54: 8248
    • 10b Hatakeyama T, Hashimoto S, Seki S, Nakamura M. J. Am. Chem. Soc. 2011; 133: 18614
    • 10c Yang D.-T, Nakamura T, He Z, Wang X, Wakamiya A, Peng T, Wang S. Org. Lett. 2018; 20: 6741
    • 11a Miyamoto F, Nakatsuka S, Yamada K, Nakayama K, Hatakeyama T. Org. Lett. 2015; 17: 6158
    • 11b Oda S, Abe H, Yasuda N, Hatakeyama T. Chem. Asian J. 2019; 14: 1657
    • 12a Kobayashi N, Takeuchi Y, Matsuda A. Angew. Chem. Int. Ed. 2007; 46: 758
    • 12b Inokuma Y, Yoon ZS, Kim D, Osuka A. J. Am. Chem. Soc. 2007; 129: 4747
    • 13a Pawlicki M, Hurej K, Szterenberg L, Latos-Grażyński L. Angew. Chem. Int. Ed. 2014; 53: 2992
    • 13b Pawlicki M, Garbicz M, Szterenberg L, Latos-Grażyński L. Angew. Chem. Int. Ed. 2015; 54: 1906
    • 14a Panda KN, Thorat KG, Ravikanth M. J. Org. Chem. 2018; 83: 12945
    • 14b Kumar A, Thorat KG, Ravikanth M. Org. Lett. 2018; 20: 4871
    • 14c Kuzuhara D, Kawatsu S, Furukawa W, Hayashi H, Aratani N, Yamada H. Eur. J. Org. Chem. 2018; 2122
    • 14d Kuzuhara D, Sakakibara Y, Mori S, Okujima T, Uno H, Yamada H. Angew. Chem. Int. Ed. 2013; 52: 3360
    • 14e Xue Z.-L, Shen Z, Mack J, Kuzuhara D, Yamada H, Okujima T, Ono N, You X.-Z, Kobayashi N. J. Am. Chem. Soc. 2008; 130: 16478
    • 15a Idec A, Skonieczny J, Latos-Grażyński L, Pawlicki M. Eur. J. Org. Chem. 2016; 3691
    • 15b Pawlicki M, Kędzia A, Szterenberg L, Latos-Grażyński L. Chem. Eur. J. 2014; 20: 17500
    • 15c Adinarayana B, Thomas AP, Yadav P, Mukundam V, Srinivasan A. Chem. Eur. J. 2017; 23: 2993
  • 16 Bartkowski K, Dimitrova M, Chmielewski PJ, Sundholm D, Pawlicki M. Chem. Eur. J. 2019; in press; doi: DOI: 10.1002/chem.201903863.
  • 17 Kuzuhara D, Xue Z, Mori S, Okujima T, Uno H, Aratani N, Yamada H. Chem. Commun. 2013; 49: 8955
  • 18 Stawski W, Hurej K, Skonieczny J, Pawlicki M. Angew. Chem. Int. Ed. 2019; 58: 10946
  • 19 Kuzuhara D, Yamada H, Xue Z, Okujima T, Mori S, Shen Z, Uno H. Chem. Commun. 2011; 47: 722
    • 20a Basumatary B, Reddy RV. R, Sankar J. Angew. Chem. Int. Ed. 2018; 57: 5052
    • 20b Rao Y, Kim T, Park KH, Peng F, Liu L, Liu Y, Wen B, Liu S, Kirk SR, Wu L, Chen B, Ma M, Zhou M, Yin B, Zhang Y, Kim D, Song J. Angew. Chem. Int. Ed. 2016; 55: 6438
  • 21 Lu X, Gopalakrishna TY, Phan H, Herng TS, Jiang Q, Liu C, Li G, Ding J, Wu J. Angew. Chem. Int. Ed. 2018; 57: 13052
    • 22a Suzuki M, Osuka A. J. Am. Chem. Soc. 2007; 129: 464
    • 22b Mori H, Lim JM, Kim D, Osuka A. Angew. Chem. Int. Ed. 2013; 52: 12997
    • 22c Karthik G, Sneha M, Raja P, Lim JM, Kim D, Srinivasan A, Chandrashekar TK. Chem. Eur. J. 2013; 19: 1886
    • 22d Lim JM, Ganesan K, Sung YM, Srinivasan A, Chandrashekar TK, Kim D. Chem. Commun. 2014; 50: 4358
    • 23a Anand VG, Saito S, Shimizu S, Osuka A. Angew. Chem. Int. Ed. 2005; 44: 7244
    • 23b Karthik G, Cha W.-Y, Ghosh A, Kim T, Srinivasan A, Kim D, Chandrashekar TK. Chem. Asian J. 2016; 11: 1447
    • 23c Cha W.-Y, Kim T, Ghosh A, Zhang Z, Ke X.-S, Ali R, Lynch VM, Jung J, Kim W, Lee S, Fukuzumi S, Park JS, Sessler JL, Chandrashekar TK, Kim D. Nat. Chem. 2017; 9: 1243
    • 24a Peeks MD, Claridge TD. W, Anderson HL. Nature 2017; 541: 200
    • 24b Peeks MD, Gong JQ, McLoughlin K, Kobatake T, Haver R, Herz LM, Anderson HL. J. Phys. Chem. Lett. 2019; 10: 2017
    • 24c Peeks MD, Jirasek M, Claridge TD. W, Anderson HL. Angew. Chem. Int. Ed. 2019; 58: 15717