Synthesis 2020; 52(03): 365-377
DOI: 10.1055/s-0039-1690769
short review
© Georg Thieme Verlag Stuttgart · New York

Aryl-Decarboxylation Reactions Catalyzed by Palladium: Scope and Mechanism

,
Department of Chemistry, University of Minnesota Twin Cities, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, USA   eMail: jtopczew@umn.edu
› Institutsangaben
Financial support was provided by the University of Minnesota.
Weitere Informationen

Publikationsverlauf

Received: 31. Oktober 2019

Accepted after revision: 27. November 2019

Publikationsdatum:
13. Dezember 2019 (online)


Abstract

Palladium-catalyzed cross-couplings and related reactions have enabled many transformations essential to the synthesis of pharmaceuticals, agrochemicals, and organic materials. A related family of reactions that have received less attention are decarboxylative functionalization reactions. These reactions replace the preformed organometallic precursor (e.g., boronic acid or organostannane) with inexpensive and readily available carboxylic acids for many palladium-catalyzed reactions. This review focuses on catalyzed reactions where the elementary decarboxylation step is thought to occur at a palladium center. This review does not include decarboxylative reactions where decarboxylation is thought to be facilitated by a second metal (copper or silver) and is specifically limited to (hetero)arenecarboxylic acids. This review includes a discussion of oxidative Heck reactions, protodecarboxylation reactions, and cross-coupling reactions among others.

1 Introduction

2 Oxidative Heck Reactions

3 Protodecarboxylation Reactions

4 Cross-Coupling Reactions

5 Other Reactions

6 Conclusion

 
  • References

  • 1 Biffis A, Centomo P, Del Zotto A, Zecca M. Chem. Rev. 2018; 118: 2249
  • 2 Bhatia AV, Federsel HJ, Chen Q. Org. Process Res. Dev. 2014; 18: 179
  • 3 Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
  • 4 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
  • 5 Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
  • 6 Johansson Seechurn CC, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
  • 7 Mesganaw T, Garg NK. Org. Process Res. Dev. 2013; 17: 29
  • 8 Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
  • 9 Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
  • 10 Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
  • 11 Hazari N, Melvin PR, Beromi MM. Nat. Rev. Chem. 2017; 1: 25
  • 12 Ingoglia BT, Buchwald SL. Org. Lett. 2017; 19: 2853
  • 13 Friis SD, Skrydstrup T, Buchwald SL. Org. Lett. 2014; 16: 4296
  • 14 Roy D, Uozumi Y. Adv. Synth. Catal. 2018; 360: 602
  • 15 Yao Q, Kinney EP, Zheng C. Org. Lett. 2004; 6: 2997
  • 16 Takenaka K, Minakawa M, Uozumi Y. J. Am. Chem. Soc. 2005; 127: 12273
  • 17 Tang Y, Zeng Y, Hu Q, Huang F, Jin L, Mo W, Sun N, Hu B, Shen Z, Hu X, Sun WH. Adv. Synth. Catal. 2016; 358: 2642
  • 18 Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
  • 19 Ackerman LK. G, Lovell MM, Weix DJ. Nature 2015; 524: 454
  • 20 Olivares AM, Weix DJ. J. Am. Chem. Soc. 2018; 140: 2446
  • 21 Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
  • 22 Nilsson M. Acta Chem. Scand. 1966; 423
  • 23 Cohen T, Schambach RA. J. Am. Chem. Soc. 1970; 92: 3189
  • 24 Cohen T, Berninger RW, Wood JT. J. Org. Chem. 1978; 43: 837
  • 25 Myers AG, Tanaka D, Mannion MR. J. Am. Chem. Soc. 2002; 124: 11250
  • 26 Gooßen LJ, Deng G, Levy LM. Science 2006; 313: 662
  • 27 Gooßen LJ, Linder C, Rodríguez N, Lange PP. Chem. Eur. J. 2009; 15: 9336
  • 28 Gooßen LJ, Zimmermann B, Linder C, Rodríguez N, Lange PP, Hartung J. Adv. Synth. Catal. 2009; 351: 2667
  • 29 Gooßen LJ, Rodríguez N, Linder C. J. Am. Chem. Soc. 2008; 130: 15248
  • 30 Gooßen LJ, Zimmermann B, Knauber T. Angew. Chem. Int. Ed. 2008; 47: 7103
  • 31 Gooßen LJ, Rodríguez N, Lange PP, Linder C. Angew. Chem. Int. Ed. 2010; 49: 1111
  • 32 Fromm A, Van Wüllen C, Hackenberger D, Gooßen LJ. J. Am. Chem. Soc. 2014; 136: 10007
  • 33 Sun Z.-M, Zhang J, Zhao P. Org. Lett. 2010; 12: 992
  • 34 Dickstein JS, Mulrooney CA, O’Brien EM, Morgan BJ, Kozlowski MC. Org. Lett. 2007; 9: 2441
  • 35 Dickstein JS, Curto JM, Gutierrez O, Mulrooney CA, Kozlowski MC. J. Org. Chem. 2013; 78: 4744
  • 36 Takamatsu K, Hirano K, Miura M. Angew. Chem. Int. Ed. 2017; 56: 5353
  • 37 Shang R, Fu Y, Wang Y, Xu Q, Yu HZ, Liu L. Angew. Chem. Int. Ed. 2009; 48: 9350
  • 38 Gooßen LJ, Thiel WR, Rodríguez N, Linder C, Melzer B. Adv. Synth. Catal. 2007; 349: 2241
  • 39 Hoover JM. Comments Inorg. Chem. 2017; 37: 169
  • 40 Crovak RA, Hoover JM. J. Am. Chem. Soc. 2018; 140: 2434
  • 41 Dupuy S, Lazreg F, Slawin AM. Z, Cazin CS. J, Nolan SP. Chem. Commun. 2011; 47: 5455
  • 42 Cornella J, Rosillo-Lopez M, Larrosa I. Adv. Synth. Catal. 2011; 353: 1359
  • 43 Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
  • 44 Honeycutt AP, Hoover JM. ACS Catal. 2017; 7: 4597
  • 45 Honeycutt AP, Hoover JM. Org. Lett. 2018; 20: 7216
  • 46 Gooßen LJ, Rodríguez N, Gooßen K. Angew. Chem. Int. Ed. 2008; 47: 3100
  • 47 Rodríguez N, Gooßen LJ. Chem. Soc. Rev. 2011; 40: 5030
  • 48 Gooßen LJ, Gooßen K, Rodríguez N, Blanchot M, Linder C, Zimmermann B. Pure Appl. Chem. 2008; 80: 1725
  • 49 Cornella J, Larrosa I. Synthesis 2012; 44: 653
  • 50 Shi W, Liu C, Lei A. Chem. Soc. Rev. 2011; 40: 2761
  • 51 Zhang T, Wang NX, Xing Y. J. Org. Chem. 2018; 83: 7559
  • 52 Dzik WI, Lange PP, Gooßen LJ. Chem. Sci. 2012; 3: 2671
  • 53 This discussion is focused exclusively on two-electron decarboxylations using arenecarboxylic acids.
  • 54 Tanaka D, Myers AG. Org. Lett. 2004; 6: 433
  • 55 Jeffery T. J. Chem. Soc., Chem. Commun. 1984; 1287
  • 56 Tanaka D, Romeril SP, Myers AG. J. Am. Chem. Soc. 2005; 127: 10323
  • 57 Böhm VP. W, Herrmann WA. Chem. Eur. J. 2001; 7: 4191
  • 58 Hu P, Kan J, Su W, Hong M. Org. Lett. 2009; 11: 2341
  • 59 Hossian A, Bhunia SK, Jana R. J. Org. Chem. 2016; 81: 2521
  • 60 Fu Z, Huang S, Su W, Hong M. Org. Lett. 2010; 12: 4993
  • 61 Ban S, Wang H, Toader V, Bohle DS, Li C. Org. Lett. 2014; 16: 6282
  • 62 Xiang S, Cai S, Zeng J, Liu X. Org. Lett. 2011; 13: 4608
  • 63 Gigant N, Chausset-Boissarie L, Gillaizeau I. Org. Lett. 2013; 15: 816
  • 64 Fardost A, Lindh J, Sjöberg PJ. R, Larhed M. Adv. Synth. Catal. 2014; 356: 870
  • 65 Ren L, Ran M, He J, Xiang D, Liu P, He C, Yao Q. Eur. J. Org. Chem. 2019; 5572
  • 66 Huang L, Qi J, Wu X, Huang K, Jiang H. Org. Lett. 2013; 15: 2330
  • 67 Werner EW, Mei T, Burckle AJ, Sigman MS. Science 2012; 338: 1455
  • 68 Al-Huniti MH, Perez MA, Garr MK, Croatt MP. Org. Lett. 2018; 20: 7375
  • 69 Matsubara S, Yokota Y, Oshima K. Org. Lett. 2004; 6: 2071
  • 70 Gooßen LJ, Rodríguez N, Linder C, Lange PP, Fromm A. ChemCatChem 2010; 2: 430
  • 71 Dupuy S, Nolan SP. Chem. Eur. J. 2013; 19: 14034
  • 72 Li X, Hewgley JB, Mulrooney CA, Yang J, Kozlowski MC. J. Org. Chem. 2003; 68: 5500
  • 73 Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
  • 74 Mulrooney CA, Morgan BJ, Li X, Kozlowski MC. J. Org. Chem. 2010; 75: 16
  • 75 Chiong HA, Pham Q.-N, Daugulis O. J. Am. Chem. Soc. 2007; 129: 9879
  • 76 Zhu R.-Y, He J, Wang X.-C, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 13194
  • 77 Corbet M, De Campo F. Angew. Chem. Int. Ed. 2013; 52: 9896
  • 78 Chen F.-J, Zhao S, Hu F, Chen K, Zhang Q, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 4187
  • 79 Wang G.-W, Yuan T.-T. J. Org. Chem. 2010; 75: 476
  • 80 Grainger R, Nikmal A, Cornella J, Larrosa I. Org. Biomol. Chem. 2012; 10: 3172
  • 81 Knapp DM, Gillis EP, Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
  • 82 Lozada J, Liu Z, Perrin DM. J. Org. Chem. 2014; 79: 5365
  • 83 Cox PA, Reid M, Leach AG, Campbell AD, King EJ, Lloyd-Jones GC. J. Am. Chem. Soc. 2017; 139: 13156
  • 84 Cox PA, Leach AG, Campbell AD, Lloyd-Jones GC. J. Am. Chem. Soc. 2016; 138: 9145
  • 85 Heim A, Terpin A, Steglich W. Angew. Chem. Int. Ed. 1997; 36: 155
  • 86 Peschko C, Winklhofer C, Steglich W. Chem. Eur. J. 2000; 6: 1147
  • 87 Forgione P, Brochu M, St-Onge M, Thesen KH, Bailey MD, Bilodeau F. J. Am. Chem. Soc. 2006; 126: 11350
  • 88 Bilodeau F, Brochu MC, Guimond N, Thesen KH, Forgione P. J. Org. Chem. 2010; 75: 1550
  • 89 Nakano M, Tsurugi H, Satoh T, Miura M. Org. Lett. 2008; 10: 1851
  • 90 Miyasaka M, Hirano K, Satoh T, Miura M. Adv. Synth. Catal. 2009; 351: 2683
  • 91 Mitchell D, Coppert DM, Moynihan HA, Lorenz KT, Kissane M, Mcnamara OA, Maguire AR. Org. Process Res. Dev. 2011; 15: 981
  • 92 Kissane M, Mcnamara OA, Mitchell D, Coppert DM, Moynihan HA, Lorenz KT, Maguire AR. Tetrahedron Lett. 2012; 53: 403
  • 93 Arroyave FA, Reynolds JR. Org. Lett. 2010; 12: 1328
  • 94 Nandi D, Jhou YM, Lee JY, Kuo BC, Liu CY, Huang PW, Lee HM. J. Org. Chem. 2012; 77: 9384
  • 95 Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403
  • 96 Miyasaka M, Fukushima A, Satoh T, Hirano K, Miura M. Chem. Eur. J. 2009; 15: 3674
  • 97 Shang R, Xu Q, Jiang YY, Wang Y, Liu L. Org. Lett. 2010; 12: 1000
  • 98 Shen Z, Ni Z, Mo S, Wang J, Zhu Y. Chem. Eur. J. 2012; 18: 4859
  • 99 Patra T, Maiti D. Chem. Eur. J. 2017; 23: 7382
  • 100 Xie H, Lin F, Lei Q, Fang W. Organometallics 2013; 32: 6957
  • 101 Daley RA, Liu E.-C, Topczewski JJ. Org. Lett. 2019; 21: 4734
  • 102 Bruno NC, Tudge MT, Buchwald SL. Chem. Sci. 2013; 4: 916
  • 103 Jafarpour F, Zarei S, Barzegar M, Olia A, Rahiminejadan S. J. Org. Chem. 2013; 78: 2957
  • 104 Zhang F, Greaney MF. Org. Lett. 2010; 12: 4745
  • 105 Becht JM, Catala C, Le Drian C, Wagner A. Org. Lett. 2007; 9: 1781
  • 106 Gooßen LJ, Lange PP, Rodríguez N, Linder C. Chem. Eur. J. 2010; 16: 3906
  • 107 Dai JJ, Liu JH, Luo DF, Liu L. Chem. Commun. 2011; 47: 677
  • 108 Mino T, Yoshizawa E, Watanabe K, Abe T, Hirai K, Sakamoto M. Tetrahedron Lett. 2014; 55: 3184
  • 109 Wang A, Li X, Liu J, Gui Q, Chen X, Tan Z, Xie K. Synth. Commun. 2014; 44: 289
  • 110 Xie K, Wang S, Yang Z, Liu J, Wang A, Li X, Tan Z, Guo CC, Deng W. Eur. J. Org. Chem. 2011; 5787
  • 111 Dabiri M, Alavioon SI, Movahed SK. Eur. J. Org. Chem. 2019; 1479
  • 112 Zhao H, Wei Y, Xu J, Kan J, Su W, Hong M. J. Org. Chem. 2011; 76: 882
  • 113 Voutchkova A, Coplin A, Leadbeater E, Crabtree RH. Chem. Commun. 2008; 6312
  • 114 Cornella J, Lu P, Larrosa I. Org. Lett. 2009; 11: 5506
  • 115 Lindh J, Sjöberg PJ. R, Larhed M. Angew. Chem. Int. Ed. 2010; 49: 7733
  • 116 Svensson F, Mane R, Sävmarker J, Larhed M, Sköld C. Organometallics 2013; 32: 490
  • 117 Axelsson L, Veron J.-B, Sävmarker J, Lindh J, Odell LR, Larhed M. Tetrahedron Lett. 2014; 55: 2376
  • 118 Rydfjord J, Svensson F, Trejos A, Sjöberg PJ. R, Sköld C, Sävmarker J, Odell LR, Larhed M. Chem. Eur. J. 2013; 19: 13803
  • 119 Song F, Salter R, Chen L. J. Org. Chem. 2017; 82: 3530
  • 120 Jana R, Trivedi R, Tunge JA. Org. Lett. 2009; 11: 3434
  • 121 Jana R, Partridge JJ, Tunge JA. Angew. Chem. Int. Ed. 2011; 50: 5157
  • 122 Pfister KF, Grünberg MF, Gooßen LJ. Adv. Synth. Catal. 2014; 356: 3302
  • 123 Daley RA, Topczewski JJ. Org. Biomol. Chem. 2019; 17: 1709
  • 124 Hossian A, Singha S, Jana R. Org. Lett. 2014; 16: 3934
  • 125 Wang J, Cui Z, Zhang Y, Li H, Wu LM, Liu Z. Org. Biomol. Chem. 2011; 9: 663
  • 126 Jiang Q, Li H, Zhang X, Xu B, Su W. Org. Lett. 2018; 20: 2424