Synlett 2020; 31(06): 535-546
DOI: 10.1055/s-0039-1690777
account
© Georg Thieme Verlag Stuttgart · New York

3,3′-Bithiophene-Based Chiral Bisphosphine Oxides as Organocatalysts in Silicon-Derived Lewis Acid Mediated Reactions

Sergio Rossi
a   Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy   Email: maurizio.benaglia@unimi.it   Email: sergio.rossi@unimi.it
,
Tiziana Benincori
b   Dipartimento di Scienza e Alta Tecnologia, Università degli Studi Dell’Insubria, Via Valleggio 11, 22100 Como, Italy
,
Laura Maria Raimondi
a   Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy   Email: maurizio.benaglia@unimi.it   Email: sergio.rossi@unimi.it
,
a   Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy   Email: maurizio.benaglia@unimi.it   Email: sergio.rossi@unimi.it
› Author Affiliations
This work was conducted with financial support from Università degli Studi di Milano, Italy (Piano Sostegno alla Ricerca - PSR2018 grant to SG).
Further Information

Publication History

Received: 21 October 2019

Accepted after revision: 03 December 2019

Publication Date:
07 January 2020 (online)


Published as part of the ISySyCat2019 Special Issue

Abstract

This account summarizes the development of new biheteroaromatic chiral bisphosphine oxides. 3,3′-Bithiophene-based phosphine oxides (BITIOPOs) have been successfully used as organocatalysts to promote Lewis base catalyzed, Lewis acid mediated stereoselective transformations. These highly electron-rich compounds, in combination with trichorosilyl derivatives (allyltrichlorosilane and silicon tetrachloride), generate hypervalent silicon species that act as chiral Lewis acids in highly diastereo- and enantioselective organic reactions. Several relevant examples related to these applications are discussed in detail.

1 Introduction

2 The BITIOPO Family

3 Enantioselective Opening of Epoxides

4 Enantioselective Allylation of Aldehydes

5 Stereoselective Direct (Double) Aldol-Type Reaction with Ketones

6 Stereoselective Direct Aldol-Type Reaction with Ester Derivatives

7 Conclusions

 
  • References

  • 1 Kobayashi S, Nishio K. Tetrahedron Lett. 1993; 34: 3453
    • 2a Denmark SE, Coe DM, Pratt NE, Griedel BD. J. Org. Chem. 1994; 59: 6161
    • 2b Denmark SE, Fu J. J. Am. Chem. Soc. 2000; 122: 12021
    • 2c Denmark SE, Stavenger RA. Acc. Chem. Res. 2000; 33: 432
    • 2d Denmark SE, Heemstra JR, Beutner GL. Angew. Chem. Int. Ed. 2005; 44: 4682
    • 2e Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 2f Denmark SE, Eklov BM. Chemistry 2008; 14: 234
    • 2g Denmark SE, Lee W. Chem. Asian J. 2008; 3: 327
    • 2h Orito Y, Nakajima M. Synthesis 2006; 1391
    • 2i Sugiura M, Nakajima M. Allylations of C–O and C–N Double Bonds and Related Reactions. In Comprehensive Chirality. Elsevier; 2012: 214
    • 2j Kotani S, Sugiura M, Nakajima M. Chem. Rec. 2013; 13: 362
    • 2k Nakajima M, Kotani S, Sugiura M. Synlett 2014; 25: 631
    • 2l Benaglia M, Guizzetti S, Pignataro L. Coord. Chem. Rev. 2008; 252: 492
    • 2m Beutner GL, Denmark SE. In Inventing Reactions, Topics in Organometallic Chemistry. Springer; Berlin, Heidelberg: 2013: 55
    • 2n Rendler S, Oestreich M. Synthesis 2005; 1727
  • 3 Denmark SE, Eklov BM, Yao PJ, Eastgate MD. J. Am. Chem. Soc. 2009; 131: 11770
    • 4a Benaglia M, Guizzetti S, Rossi S. Silicate-Mediated Stereoselective Reactions Catalyzed by Chiral Lewis Bases. In Catalytic Methods in Asymmetric Synthesis. John Wiley & Sons, Inc; Weinheim: 2011: 579-624
    • 4b Rossi S, Denmark SE. Lewis Base-Catalyzed, Lewis Acid-Mediated Reactions (n →  σ*). In Lewis Base Catalysis in Organic Synthesis. Wiley-VCH; Weinheim: 2016: 1039-1076
    • 4c Denmark SE, Beutner GL. Principles, Definitions, Terminology, and Orbital Analysis of Lewis Base-Lewis Acid Interactions Leading to Catalysis. In Lewis Base Catalysis in Organic Synthesis. Wiley-VCH; Weinheim: 2016: 31-54
    • 4d Kočovský P, Malkov AV. Lewis Bases as Catalysts in the Reduction of Imines and Ketones with Silanes (n →  σ*). In Lewis Base Catalysis in Organic Synthesis. Wiley-VCH; Weinheim: 2016: 1077-1112
    • 4e Malkov AV, Kočovský P. Lewis Base-Catalyzed Reactions of SiX3-Based Reagents with C=O, C=N (n →  σ*). In Lewis Base Catalysis in Organic Synthesis. Wiley-VCH; Weinheim: 2016
    • 4f Wilson TW, Denmark SE. Reactions of Epoxides (n →  σ*) . In Lewis Base Catalysis in Organic Synthesis . Wiley-VCH; Weinheim: 2016: 1113-1152
  • 5 Short JD, Attenoux S, Berrisford DJ. Tetrahedron Lett. 1997; 38: 2351
  • 6 Kobayashi S, Sugiura M, Ogawa C. Adv. Synth. Catal. 2004; 346: 1023
  • 7 Nakajima M, Kotani S, Ishizuka T, Hashimoto S. Tetrahedron Lett. 2005; 46: 157
  • 8 Denmark SE, Fu J. J. Am. Chem. Soc. 2003; 125: 2208
  • 10 Malkov AV, Kočovský P. Lewis Base-Catalyzed Reactions of SiX3-Based Reagents with C=O, C=N (n →  σ*). In Lewis Base Catalysis in Organic Synthesis. Wiley-VCH; Weinheim: 2016: 1011-1038
  • 11 Benaglia M, Rossi S. Org. Biomol. Chem. 2010; 8: 3824
  • 12 Benincori T, Cesarotti E, Piccolo O, Sannicolò F. J. Org. Chem. 2000; 65: 2043
  • 13 Simonini V, Benaglia M, Benincori T. Adv. Synth. Catal. 2008; 350: 561
  • 14 Pu X, Qi X, Ready JM. J. Am. Chem. Soc. 2009; 131: 10364
  • 15 Sugiura M, Sato N, Sonoda Y, Kotani S, Nakajima M. Chem. Asian J. 2010; 5: 478
  • 16 Ohmaru Y, Sato N, Mizutani M, Kotani S, Sugiura M, Nakajima M. Org. Biomol. Chem. 2012; 10: 4562
  • 17 Bonsignore M, Benaglia M, Cozzi F, Genoni A, Rossi S, Raimondi L. Tetrahedron 2012; 68: 8251
  • 18 Chen J, Liu D, Fan D, Liu Y, Zhang W. Tetrahedron 2013; 69: 8161
  • 19 Zhang P, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2013; 52: 11054
  • 20 Ogasawara M, Kotani S, Nakajima H, Furusho H, Miyasaka M, Shimoda Y, Wu WY, Sugiura M, Takahashi T, Nakajima M. Angew. Chem. Int. Ed. 2013; 52: 13798
  • 21 Rossi S, Benaglia M, Genoni A. Tetrahedron 2014; 70: 2065
  • 22 Sevrain N, Volle J.-N, Pirat J.-L, Ayad T, Virieux D. RSC Adv. 2017; 7: 52101
  • 23 Sevrain N, Volle J.-N, Pirat J.-L, Ayad T, Virieux D. Eur. J. Org. Chem. 2018; 2267
  • 24 Rossi S, Benaglia M, Cirilli R, Benincori T. Asymmetric Catal. 2015; 2: 17
  • 25 Abbinante VM, Benaglia M, Rossi S, Benincori T, Cirilli R, Pierini M. Org. Biomol. Chem. 2019; 17: 7474
  • 26 Ayad T, Gernet A, Pirat J.-L, Virieux D. Tetrahedron 2019; For some representative examples of recent works not involving the use of biheteroaromatic phosphine oxides, see: 75: 4385
  • 27 Tokuoka E, Kotani S, Matsunaga H, Ishizuka T, Hashimoto S, Nakajima M. Tetrahedron: Asymmetry 2005; 16: 2391
  • 28 Kotani S, Furusho H, Sugiura M, Nakajima M. Tetrahedron 2013; 69: 3075
  • 29 Denmark SE, Barsanti PA, Beutner GL, Wilson TW. Adv. Synth. Catal. 2007; 349: 567
  • 30 Kotani S, Hashimoto S, Nakajima M. Tetrahedron 2007; 63: 3122
  • 31 Kotani S, Shimoda Y, Sugiura M, Nakajima M. Tetrahedron Lett. 2009; 50: 4602
  • 32 Rossi S, Benaglia M, Genoni A, Benincori T, Celentano G. Tetrahedron 2011; 67: 158
  • 33 Denmark SE, Fu J. J. Am. Chem. Soc. 2003; 125: 2208
  • 34 Shimoda Y, Kotani S, Sugiura M, Nakajima M. Chem. Eur. J. 2011; 17: 7992
  • 35 Genoni A, Benaglia M, Rossi S, Celentano G. Chirality 2013; 25: 643
  • 36 Rossi S, Benaglia M, Cozzi F, Genoni A, Benincori T. Adv. Synth. Catal. 2011; 353: 848
  • 37 Wilcox CS, Babston RE. J. Org. Chem. 1984; 49: 1451
  • 38 Rossi S, Annunziata R, Cozzi F, Raimondi L. Synthesis 2015; 47: 2113