Synthesis 2020; 52(11): 1695-1706
DOI: 10.1055/s-0039-1690905
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Approaches for the Synthesis of Diverse α-Diazo Amides

Shiao Chow
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   eMail: a.s.nelson@leeds.ac.uk
,
Adam I. Green
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   eMail: a.s.nelson@leeds.ac.uk
,
Christopher Arter
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   eMail: a.s.nelson@leeds.ac.uk
,
Samuel Liver
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   eMail: a.s.nelson@leeds.ac.uk
,
Abbie Leggott
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   eMail: a.s.nelson@leeds.ac.uk
,
Luke Trask
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   eMail: a.s.nelson@leeds.ac.uk
,
George Karageorgis
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   eMail: a.s.nelson@leeds.ac.uk
,
Stuart Warriner
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   eMail: a.s.nelson@leeds.ac.uk
,
Adam Nelson
a   School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
b   Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK   eMail: a.s.nelson@leeds.ac.uk
› Institutsangaben
We thank the Engineering and Physical Sciences Research Council (EPSRC) (EP/N025652/1), the Biotechnology and Biological Sciences Research Council (BBSRC), GlaxoSmithKline (GSK) and LifeArc for funding.
Weitere Informationen

Publikationsverlauf

Received: 05. November 2019

Accepted after revision: 04. Januar 2020

Publikationsdatum:
06. Februar 2020 (online)


Abstract

Metal-catalysed carbenoid chemistry can be exploited for the synthesis of diverse ranges of small molecules from α-diazo carbonyl compounds. In this paper, three synthetic approaches to α-diazo amides are described, and their scope and limitations are determined. On the basis of these synthetic studies, recommendations are provided to assist the selection of the most appropriate approach for specific classes of product. The availability of practical and efficient syntheses of diverse α-diazo acetamides is expected to facilitate the discovery of many different classes of bioactive small molecules.

Supporting Information

 
  • References

  • 1 Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
  • 2 Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
  • 3 Gillingham D, Fei N. Chem. Soc. Rev. 2013; 42: 4918
  • 4 Padwa A, Weingarten MD. Chem. Rev. 1996; 96: 223
    • 5a Padwa A, Austin DJ, Price AT, Semones MA, Doyle MP, Protopopova MN, Winchester WR, Tran A. J. Am. Chem. Soc. 1993; 115: 8669
    • 5b Padwa A, Austin DJ. Angew. Chem., Int. Ed. Engl. 1994; 33: 1797
  • 6 Doyle MP, Winchester WR, Hoorn JA. A, Lynch V, Simonsen SH, Ghosht R. J. Am. Chem. Soc. 1993; 115: 9968
  • 7 James MJ, O’Brien P, Taylor RJ. K, Unsworth WP. Angew. Chem. Int. Ed. 2016; 55: 9671
  • 8 Liao K, Yang Y.-F, Sanders JN, Houk KN, Musaev DG, Davies HM. L. Nat. Chem. 2018; 10: 1048
  • 9 Shen B, Wan B, Li X. Angew. Chem. Int. Ed. 2018; 57: 15534
  • 10 Ma B, Wu Z, Huang B, Liu L, Zhang J. Chem. Commun. 2017; 53: 10164
  • 11 Karageorgis G, Warriner S, Nelson A. Nat. Chem. 2014; 6: 872
  • 12 Karageorgis G, Dow M, Aimon A, Warriner S, Nelson A. Angew. Chem. Int. Ed. 2015; 54: 13538
  • 13 House HO, Blankley CJ. J. Org. Chem. 1968; 33: 53
    • 14a Hodgson DM, Angrish D. Chem. Eur. J. 2007; 13: 3470
    • 14b Fan G, Wang Z, Wee AG. H. Chem. Commun. 2006; 3732
    • 14c Lei H, Atkinson J. J. Org. Chem. 2000; 65: 2560
    • 15a Liu G, Zhang D, Li J, Xu G, Sun J. Org. Biomol. Chem. 2013; 11: 900
    • 15b Hashimoto T, Uchiyama N, Maruoka K. J. Am. Chem. Soc. 2008; 130: 14380
    • 16a Fulton JR, Aggarwal VK, De Vicente J. Eur. J. Org. Chem. 2005; 1479
    • 16b Lapinsky DJ, Yarravarapu N, Nolan TL, Surratt CK, Lever JR, Tomlinson M, Vaughan RA, Deutsch HM. ACS Med. Chem. Lett. 2012; 3: 378
    • 17a Peng C, Cheng J, Wang J. J. Am. Chem. Soc. 2007; 129: 8708
    • 17b Ye F, Qu S, Zhou L, Peng C, Wang C, Cheng J, Hossain ML, Liu Y, Zhang Y, Wang Z.-X, Wang J. J. Am. Chem. Soc. 2015; 137: 4435
    • 17c Padwa A, Sá MM, Weingarten MD. Tetrahedron 1997; 53: 2371
    • 17d Yamamoto K, Qureshi Z, Tsoung J, Pisella G, Lautens M. Org. Lett. 2016; 18: 4954
    • 17e Fu L, Mighion JD, Voight EA, Davies HM. L. Chem. Eur. J. 2017; 23: 3272
  • 18 Regitz M. Angew. Chem., Int. Ed. Engl. 1967; 6: 733
  • 19 Doyle MP, McKervey MA, Ye T. J. Chem. Educ. 1999; 76: 1191
  • 20 Baum JS, Shook DA, Davies HM. L, Smith HD. Synth. Commun. 1987; 17: 1709
  • 21 Miriyala B, Williamson JS. Tetrahedron Lett. 2003; 44: 7957
  • 22 Villalgordo JM, Enderli A, Linden A, Heimgartner H. Helv. Chim. Acta 1995; 78: 1983
  • 23 Wang H, Li Z, Wang G, Yang S. Chem. Commun. 2011; 47: 11336
  • 24 Sako M, Yaekura I, Oda S, Hirota K. J. Org. Chem. 2000; 65: 6670
  • 25 Wang Z, Bi X, Liao P, Zhang R, Liang Y, Dong D. Chem. Commun. 2012; 48: 7076
  • 26 Coffrey KE, Murphy GK. Synlett 2015; 26: 1003
  • 27 Nikolaev VA, Shevchenko VV, Platz MS, Khimich NN. Russ. J. Org. Chem. 2006; 42: 815