Synthesis 2020; 52(04): 619-628
DOI: 10.1055/s-0039-1691069
paper
© Georg Thieme Verlag Stuttgart · New York

A Green Nanopalladium-Supported Catalyst for the Microwave-Assisted Direct Synthesis of Xanthones

H. Sebastián Steingruber
,
Pamela Mendioroz
,
Alejandra S. Diez
,
Darío C. Gerbino
Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina   eMail: dgerbino@uns.edu.ar
› Institutsangaben
This work was partially supported by the National Council of Scientific and Technical Research (Consejo Nacional de Investigaciones Científicas y Técnicas; CONICET), the National Agency for Scientific and Technological Promotion (Agencia Nacional de Promoción Científica y Tecnológica; ANPCyT), and the Universidad Nacional del Sur (Secretaría General de Ciencia y Tecnología, Universidad Nacional del Sur; SGCyT-UNS), Argentina. H.S.S. and P.M. thank CONICET and ANPCyT for a doctoral fellowship. D.C.G. is a research member of CONICET. Thanks are also given to ANPCyT for the purchase of the SPECS multitechnique analysis instrument (PME8-2003).
Weitere Informationen

Publikationsverlauf

Received: 03. September 2019

Accepted after revision: 10. Oktober 2019

Publikationsdatum:
30. Oktober 2019 (online)


Abstract

We report an efficient, selective, rapid and eco-friendly protocol for the one-step synthesis of a small xanthone library via an intermolecular catalytic coupling from readily available salicylaldehydes and 1,2-dihaloarenes under ligand-free conditions. To achieve this advantageous direct annulation, we used a novel recoverable palladium nanocatalyst supported on a green biochar under microwave irradiation. Unlike other existing palladium-based approaches, our synthetic strategy showed a greater operational simplicity, drastic reduction in reaction times, and an excellent tolerance to diverse functional groups. The reaction proceeds in very good yields and with high regioselectivity. The novel heterogeneous catalyst can be recycled and reused up to four times without significant loss of activity.

Supporting Information

 
  • References and Notes

  • 1 Hepworth JD. In Comprehensive Heterocyclic Chemistry . Pergamon; Oxford: 1984: 3
    • 3a Sousa E, Pinto MM. Curr. Med. Chem. 2005; 12: 24472
    • 3b Suzuki Y, Fukuta Y, Ota S, Kamiya M, Sato M. J. Org. Chem. 2011; 76: 3960
    • 3c Barbero N, SanMartin R, Domínguez E. Green Chem. 2009; 11: 830
    • 3d Cardona ML, Fernández MJ, Pedro JR, Serrano A. Photochemistry 1990; 29: 3003
    • 3e Woo S, Jung J, Lee C, Kwon Y, Na Y. Bioorg. Med. Chem. Lett. 2007; 17: 1163
    • 4a Menéndez CA, Biscussi B, Accordino RS, Murray AP, Appignanesi GA, Gerbino DC. Bioorg. Chem. 2017; 75: 201
    • 4b Shagufta W, Ahmad I. Eur. J. Med. Chem. 2016; 116: 267
    • 5a Holleman AF. Org. Synth. 1927; 7: 84
    • 5b Blatt AH. Org. React. 1942; 1: 342
    • 5c Berlinger E. Org. React. 1949; 5: 229
    • 5d Grover PK, Shah GD, Shah RC. J. Chem. Soc. 1955; 3982
    • 5e Quillinan A, Scheinmann F. J. Chem. Soc., Perkin Trans. 1 1973; 1329
    • 5f Jackson WT, Robert JB, Froelich LL, Gapinski DM, Mallett BE, Sawyer JS. J. Med. Chem. 1993; 36: 1726
    • 5g Familoni OB, Ionica I, Bower JF, Snieckus V. Synlett 1997; 1081
    • 5h Hassal CH, Lewis JR. J. Chem. Soc. 1961; 2312
    • 5i Murashige R, Hayashi Y, Ohmori S, Torii A, Aizu Y, Muto Y, Murai Y, Oda Y, Hashimoto M. Tetrahedron 2011; 67: 641

      For some recent synthetic xanthone routes, see:
    • 6a Tang J, Zhao S, Wei Y, Quan Z, Huo C. Org. Biomol. Chem. 2017; 15: 1589
    • 6b Venkanna A, Vinod K, Goud P, Prasad PV, Shanker M, Rao PV. ChemistrySelect 2016; 1: 2271
    • 6c Rao ML. N, Ramakrishna BS. RSC Adv. 2016; 6: 75505
    • 6d Shen C, Wu XF. Synlett 2016; 27: 1269
    • 6e Wang S, Xie K, Tan Z, An X, Zhou X, Guo CC, Peng Z. Chem. Commun. 2009; 42: 6469
    • 6f Zhao J, Larock RC. Org. Lett. 2005; 7: 4273
    • 6g Zhao J, Larock RC. J. Org. Chem. 2007; 72: 583
    • 6h Wertz S, Leifert D, Studer A. Org. Lett. 2013; 15: 928
    • 6i Yang J, Dong C, Li H, Li Y. Chin. Sci. Bull. 2012; 57: 2364
    • 6j Wang P, Rao H, Hua R, Li CJ. Org. Lett. 2012; 14: 902
    • 6k Manna SK, Lavanya S, Manda K, Panda G. Tetrahedron Lett. 2014; 55: 5759
    • 6l Zhang H, Shi R, Gan P, Liu C, Ding A, Wang Q, Lei A. Angew. Chem. Int. Ed. 2012; 51: 5204
    • 6m Xu Y, Zhou J, Zhang C, Chen K, Zhang T, Du Z. Tetrahedron Lett. 2014; 55: 6432
    • 6n Genovese S, Fiorito S, Specchiulli MC, Taddeo VA, Epifano F. Tetrahedron Lett. 2015; 56: 847
    • 6o Hu J, Adogla EA, Ju Y, Fan D, Wang Q. Chem. Commun. 2012; 48: 11256
    • 6p Rao H, Ma X, Liu Q, Li Z, Cao S, Li CJ. Adv. Synth. Catal. 2013; 355
    • 6q Suzuki Y, Fukuta Y, Ota S, Kamiya M, Sato M. J. Org. Chem. 2011; 76: 3960
    • 6r Jiang N, Li SY, Xie SS, Yao H, Sun H, Wang XB, Kong LY. RSC Adv. 2014; 4: 63632
    • 6s Barbero N, San Martin R, Domínguez E. Green Chem. 2009; 11: 830
    • 6t Hintermann L, Masuo R, Suzuki K. Org. Lett. 2008; 10: 4859
    • 6u Woydziak ZR, Fu L, Peterson BR. J. Org. Chem. 2012; 77: 473
    • 6v Johnson MM, Naidoo JM, Fernandes MA, Mmutlane EM, van Otterlo WA, de Koning BA. J. Org. Chem. 2010; 75: 8701
    • 7a Hemalatha K, Madhumitha G, Kajbafvala A, Anupama N, Sompalle R, Roopan MS. J. Nanomater. 2013; 341015
    • 7b Polshettiwar R, Varma S. Green Chem. 2010; 12: 743
    • 7c Astruc D. Nanoparticles and Catalysis . Wiley-VCH; Weinheim: 2008. Chap. 1
    • 8a Sosnik A, Gotelli G, Abraham GA. Prog. Polym. Sci. 2011; 36: 1050
    • 8b Kappe CO. Chem. Soc. Rev. 2008; 37: 1127
  • 9 Atwood DA. Sustainable Inorganic Chemistry . Wiley-VCH; Weinheim: 2016: 333
    • 10a Menéndez CA. Doctoral Dissertation . Universidad Nacional del Sur; Argentina: 2018
    • 10b Scoccia J, Castro MJ, Faraoni MA, Bouzat C, Martín VS, Gerbino DC. Tetrahedron 2017; 73: 2913
    • 10c Menéndez C, Nador F, Radivoy G, Gerbino DC. Org. Lett. 2014; 16: 2846
    • 10d Sierra MB, Alarcón L, Gerbino DC, Pedroni VI, Buffo FE, Morini MA. Chem. Phys. Lipids 2017; 206
    • 11a Ruan J, Saidi O, Iggo JA, Xiao J. J. Am. Chem. Soc. 2008; 130: 10510
    • 11b Satoh T, Itaya T, Miura M, Nomura M. Chem. Lett. 1996; 823
    • 11c Álvarez-Bercedo P, Flores-Gaspar A, Correa A, Martin R. J. Am. Chem. Soc. 2010; 132: 466
    • 11d Solé D, Mariani F. J. Org. Chem. 2013; 78: 8136
    • 11e Nowrouzi N, Motevalli S, Tarokh D. J. Mol. Catal. A: Chem. 2015; 396: 224
    • 11f Solé D, Mariani F, Fernández I. Eur. J. Org. Chem. 2015; 3935
    • 12a Casoni AI, Bidegain M, Cubitto M, Curvetto N, Volpe M. Bioresour. Technol. 2014; 177: 406
    • 12b Casoni AI, Hoch PM, Volpe M, Gutierrez VJ. J. Cleaner Prod. 2018; 178: 237
  • 13 For a very interesting review on transition-metal-catalyzed site-selective cross-coupling reactions of di- and polyhalogenated compounds, see: Wang JR, Manabe K. Synthesis 2009; 1405
    • 14a Solé D, Mariani F. J. Org. Chem. 2013; 78: 8136
    • 14b Tsuda T, Satoh T, Miura M. Chem. Lett. 1997; 1103
    • 14c Satoh T, Inoh JC, Kawamura Y, Miura M, Nomura M. Bull. Chem. Soc. Jpn. 1998; 71: 2239
    • 14d Satoh T, Kametani Y, Terao Y, Miura M, Nomura M. Angew. Chem., Int. Ed. Engl. 1997; 36: 1740
    • 14e Kawamura Y, Satoh T, Miura M, Nomura M. Chem. Lett. 1999; 961
  • 15 Satoh T, Itaya T, Miura M, Nomura M. Chem. Lett. 1996; 823
  • 16 Perrin DD, Amarego WL. F. Purification of Laboratory Chemicals . Pergamon; Oxford: 1988
  • 17 Schölten JF, Pijpers AP, Hustings ML. Catal. Rev.: Sci. Eng. 1985; 27: 151
  • 18 Mozingo R. Org. Synth. 1955; 3: 685
  • 19 Gardikis Y, Tsoungas PG, Potamitis C, Zervou M, Cordopatis P. Heterocycles 2011; 83: 1077
  • 20 Zhao J, Yue D, Campo MA, Larock RC. J. Am. Chem. Soc. 2007; 129: 5288
  • 21 Cremins PJ, Saengchantara ST, Wallace TW. Tetrahedron 1987; 43: 3075
  • 22 Fremeau T, White RD. Jr, Patel VF. J. Med. Chem. 2014; 57: 9796
  • 23 Granoth I, Pownall HJ. J. Org. Chem. 1975; 40: 2088
  • 24 Dhar SN. J. Chem. Soc., Trans. 1920; 117: 1053