CC BY-NC-ND 4.0 · Methods Inf Med 2019; 58(S 01): e14-e25
DOI: 10.1055/s-0039-1692465
Position Paper
Georg Thieme Verlag KG Stuttgart · New York

Robotic Systems in Operating Theaters: New Forms of Team–Machine Interaction in Health Care

On Challenges for Health Information Systems on Adequately Considering Hybrid Action of Humans and Machines
Jochen Steil
1   Institute for Robotics and Process Control, TU Braunschweig, Braunschweig, Germany
,
Dominique Finas
2   Department of Gynecology, Obstetrics, and Reproductive Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
,
Susanne Beck
3   Institute for Criminal Law and Criminology, Leibniz University Hannover, Hannover, Germany
,
Arne Manzeschke
4   Institute for Nursing Research, Gerontology, and Ethics, Lutheran University of Applied Science Nuremberg, Nuremberg, Germany
,
Reinhold Haux
5   Peter L. Reichertz Institute for Medical Informatics, TU Braunschweig and Hannover Medical School, Braunschweig, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

19. Januar 2019

01. April 2019

Publikationsdatum:
23. Juli 2019 (online)

Abstract

Background Health information systems have developed rapidly and considerably during the last decades, taking advantage of many new technologies. Robots used in operating theaters represent an exceptional example of this trend. Yet, the more these systems are designed to act autonomously and intelligently, the more complex and ethical questions arise about serious implications of how future hybrid clinical team–machine interactions ought to be envisioned, in situations where actions and their decision-making are continuously shared between humans and machines.

Objectives To discuss the many different viewpoints—from surgery, robotics, medical informatics, law, and ethics—that the challenges of novel team–machine interactions raise, together with potential consequences for health information systems, in particular on how to adequately consider what hybrid actions can be specified, and in which sense these do imply a sharing of autonomous decisions between (teams of) humans and machines, with robotic systems in operating theaters as an example.

Results Team–machine interaction and hybrid action of humans and intelligent machines, as is now becoming feasible, will lead to fundamental changes in a wide range of applications, not only in the context of robotic systems in surgical operating theaters. Collaboration of surgical teams in operating theaters as well as the roles, competencies, and responsibilities of humans (health care professionals) and machines (robotic systems) need to be reconsidered. Hospital information systems will in future not only have humans as users, but also provide the ground for actions of intelligent machines.

Conclusions The expected significant changes in the relationship of humans and machines can only be appropriately analyzed and considered by inter- and multidisciplinary collaboration. Fundamentally new approaches are needed to construct the reasonable concepts surrounding hybrid action that will take into account the ascription of responsibility to the radically different types of human versus nonhuman intelligent agents involved.

 
  • References

  • 1 Gardner RM. Clinical information systems - from yesterday to tomorrow. Yearb Med Inform 2016; (Suppl. 01) S62-S75
  • 2 Lun KC. The datafication of everything - even toilets. Yearb Med Inform 2018; 27 (01) 234-236
  • 3 Martin-Sanchez FJ, Lopez-Campos GH. The new role of biomedical informatics in the age of digital medicine. Methods Inf Med 2016; 55 (05) 392-402
  • 4 Scheer AW, Wahlster W. Saarbrücken Declaration for a digitization push in Germany (Saarbrücker Manifest für einen Digitalisierungsruck in Deutschland). November 2016 (in German). Available at: https://www.scheer-group.com/Scheer/uploads/2016/11/Scheer_Saarbrücker-Manifest.pdf . Accessed August 14, 2018
  • 5 Reichertz PL. Hospital information systems--past, present, future. Int J Med Inform 2006; 75 (3–4): 282-299
  • 6 Haux R. Health information systems - past, present, future. Int J Med Inform 2006; 75 (3–4): 268-281
  • 7 Arnrich B, Ersoy C, Mayora O, Dey A, Berthouze N, Kunze K. Wearable therapy - detecting information from wearables and mobiles that are relevant to clinical and self-directed therapy. Methods Inf Med 2017; 56 (01) 37-39
  • 8 Friedman CP, Rubin JC, Sullivan KJ. Toward an information infrastructure for global health improvement. Yearb Med Inform 2017; 26 (01) 16-23
  • 9 Winter A, Takabayashi K, Jahn F. , et al. Quality requirements for electronic health record systems*. A Japanese-German information management perspective. Methods Inf Med 2017; 56 (07) e92-e104
  • 10 Vedula SS, Ishii M, Hager GD. Objective assessment of surgical technical skill and competency in the operating room. Annu Rev Biomed Eng 2017; 19: 301-325
  • 11 Haux R, Kulikowski CA, Bakken S. , et al. Research strategies for biomedical and health informatics. some thought-provoking and critical proposals to encourage scientific debate on the nature of good research in medical informatics. Methods Inf Med 2017; 56 (Open): e1-e10
  • 12 McCray AT, Gefeller O, Aronsky D. , et al. The birth and evolution of a discipline devoted to information in biomedicine and health care. As reflected in its longest running journal. Methods Inf Med 2011; 50 (06) 491-507
  • 13 Ainsworth J, Buchan I. Combining health data uses to ignite health system learning. Methods Inf Med 2015; 54 (06) 479-487
  • 14 Detmer DE. At last! A working model of a data ecosystem for continuous learning in the evolving health noosphere. Methods Inf Med 2015; 54 (06) 477-478
  • 15 Denaxas S, Friedman CP, Geissbuhler A. , et al. Discussion of “Combining health data uses to ignite health system learning”. Methods Inf Med 2015; 54 (06) 488-499
  • 16 Shortliffe EH. Digital medicine and biomedical informatics: what's in a name?. Methods Inf Med 2016; 55 (05) 389-391
  • 17 Al-Shorbaji N, Bellazzi R, Gonzalez Bernaldo de Quiros F. , et al. Discussion of “The new role of biomedical informatics in the age of digital medicine”. Methods Inf Med 2016; 55 (05) 403-421
  • 18 Gonzalez Bernaldo de Quiros F, Dawidowski AR, Figar S. Representation of people's decisions in health information systems.* A complementary approach for understanding health care systems and population health. Methods Inf Med 2017; 56 (Open): e13-e19
  • 19 Ring D, Tierney WM. Health information systems supporting health and resiliency through improved decision-making. Methods Inf Med 2017; 56 (Open): e11-e12
  • 20 Al-Shorbaji N, Borycki EM, Kimura M. , et al. Discussion of “Representation of people's decisions in health information systems: a complementary approach for understanding health care systems and population health”. Methods Inf Med 2017; 56 (Open): e20-e29
  • 21 Braunschweig Scientific Society. 14th Bioethics Symposium “Robots in Operating Theatres”. (Braunschweigische Wissenschaftliche Gesellschaft. 14. Bioethik-Symposium “Roboter im Operationssaal”), February 7, 2018 (in German). Available at: https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00045303/Jahrbuch-BWG-2018.pdf . Accessed August 14, 2018
  • 22 Catchpole KR, Hallett E, Curtis S, Mirchi T, Souders CP, Anger JT. Diagnosing barriers to safety and efficiency in robotic surgery. Ergonomics 2018; 61 (01) 26-39
  • 23 Sharma B, Mishra A, Aggarwal R, Grantcharov TP. Non-technical skills assessment in surgery. Surg Oncol 2011; 20 (03) 169-177
  • 24 Cunningham S, Chellali A, Jaffre I, Classe J, Cao CGL. Effects of experience and workplace culture in human-robot team interaction in robotic surgery: a case study. Int J Soc Robot 2013; 5: 75-88
  • 25 Randell R, Honey S, Hindmarsh J. , et al. A realist process evaluation of robot-assisted surgery: integration into routine practice and impacts on communication, collaboration and decision-making. Health Serv Del Res 2017 5(20):
  • 26 Lai F, Entin E. Integrating surgical robots into the next medical toolkit. Stud Health Technol Inform 2006; 119: 285-287
  • 27 Vitiello V, Lee SL, Cundy TP, Yang GZ. Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng 2013; 6: 111-126
  • 28 Bhatti NI, Cummings CW. Competency in surgical residency training: defining and raising the bar. Acad Med 2007; 82 (06) 569-573
  • 29 Szasz P, Louridas M, Harris KA, Aggarwal R, Grantcharov TP. Assessing technical competence in surgical trainees: a systematic review. Ann Surg 2015; 261 (06) 1046-1055
  • 30 Dietz A. Ändert sich mit der Digitalisierung des Operationssaals das Berufsbild des Chirurgen? Beispiel Kopf-Hals-Onkologie. In: Niederlag W, Lemke HU, Strauß G, Feußner H. , eds. Der digitale Operationssaal. Berlin: De Gruyter; 2014: 219-231
  • 31 Kluge EW. Health information professionals in a global ehealth world: ethical and legal arguments for the international certification and accreditation of health information professionals. Int J Med Inform 2017; 97: 261-265
  • 32 SARAS. Smart autonomous robotic assistant surgeon im Rahmen des EU Framework Programme for Research and Innovation. Available at; https://saras-project.eu/ . Accessed December 23, 2018
  • 33 TMCapital. The Next Generation of Medicine: Artificial Intelligence and Machine Learning. Industry Spotlight. New York, NY: TMCapital; 2017: 1-23
  • 34 Beyer P. The Future Directive On Environmental Liability - A Tool to Implement the Precautionary Principle?. Berlin: Ecologic Institute; 2004
  • 35 Veruggio G. EURON Roboethics Roadmap. Genova: Scuola di Robotics; 2006
  • 36 Abboudi H, Khan MS, Aboumarzouk O, Guru KA, Challacombe B, Dasgupta P, Ahmed K. Current status of validation for robotic surgery simulators - a systematic review. BJU Int 2013; 111 (02) 194-205
  • 37 Roman H, Marpeau L, Hulsey TC. Surgeons' experience and interaction effect in randomized controlled trials regarding new surgical procedures. Am J Obstet Gynecol 2008; 199 (02) 108.e1-108.e6
  • 38 PwC. What doctor? Why AI and robotics will define New Health. 2017. Available at: https://www.pwc.at/de/publikationen/branchen-und-wirtschaftsstudien/healthcare-ai-new-health.pdf . Accessed September 17, 2018
  • 39 Zattoni F, Guttilla A, Crestani A. , et al. The value of open conversion simulations during robot-assisted radical prostatectomy: implications for robotic training curricula. J Endourol 2015; 29 (11) 1282-1288
  • 40 Lucas SM, Pattison EA, Sundaram CP. Global robotic experience and the type of surgical system impact the types of robotic malfunctions and their clinical consequences: an FDA MAUDE review. BJU Int 2012; 109 (08) 1222-1227 , discussion 1227
  • 41 Walters C, Webb PJ. Maximizing efficiency and reducing robotic surgery costs using the NASA task load index. AORN J 2017; 106 (04) 283-294
  • 42 Ross SB, Downs D, Saeed SM, Dolce JK, Rosemurgy AS. Robotics in surgery: is a robot necessary? For what?. Minerva Chir 2017; 72 (01) 61-70
  • 43 Chikwe J, de Souza AC, Pepper JR. No time to train the surgeons. BMJ 2004; 328 (7437): 418-419
  • 44 Niederlag W, Lemke HU, Strauß G, Feußner H. , eds. Der digitale Operationssal, 2nd ed. Berlin: De Gruyter; 2014. (in German).
  • 45 Da Rosa CC. Operationsroboter in Aktion: kontroverse Innovationen in der Medizintechnik. Bielefeld: Transcript Verlag; 2014
  • 46 Beasly RA. Medical robots: current systems and research directions. J Robot 2012; 401613
  • 47 Taylor RH, Menciassi A, Fichtinger G, Fiorini P, Dario P. Medical robotics and computer-integrated surgery. In: Siciliano B, Khatib O. , eds. Springer Handbook of Robotics. 2nd ed. Heidelberg: Springer; 2016: 1657-1684
  • 48 Manzeschke A. Digitales Operieren und Ethik. In: Niederlag W, Lemke HU, Strauß G, Feußner H. , eds. Der digitale Operationssal. 2nd ed. Berlin: De Gruyter; 2014. (in German): 227-49
  • 49 Hubig H. Mensch-Maschine-Interaktion in hybriden Systemen. In: Hubig H, Koslowski P. , eds. Maschinen, die unsere Brüder werden. Mensch-Maschine-Interaktion in hybriden Systemen. Paderborn: Fink; 2008. (in German): 9-17
  • 50 Rammert W. Technik-Handeln-Wissen. Wiesbanden: VS Verlag für Sozialwissenschaften; 2007. (in German)
  • 51 Beer JM, Fisk AD, Rogers WA. Toward a framework for levels of robot autonomy in human-robot interaction. J Hum Robot Interact 2014; 3 (02) 74-99
  • 52 Beck S. The problem of ascribing legal responsibility in the case of robotics. AI Soc 2016; 31: 473-481
  • 53 Murphy R, Casper J, Micire M, Hyams J. Mixed-initiative control of multiple heterogeneous robots for usar. Technical Report CRASAR-TR2000–11. Tampa, FL: Center for Robot Assisted Search and Rescue, University of South Florida; 2000
  • 54 Schilling M, Kopp S, Wachsmuth S. , et al. Towards a multidimensional perspective on shared autonomy. Paper presented at: Proc. AAAI Fall Symposium Series: Shared Autonomy in Research and Practice. Paolo Alto, CA: AAAI; 2016 :338–344
  • 55 Cheng G, Zelinsky A. Supervised autonomy: a framework for human-robot systems development. Auton Robots 2001; 10: 251-266
  • 56 Niemeyer G, Preusche C, Hirzinger G. Telerobotics. In: Siciliano B, Khatib O. , eds. Springer Handbook of Robotics. Berlin: Springer; 2008: 741-757
  • 57 Gransche B. Wir assistieren uns zu Tode. Leben mit Assistenzsystemen zwischen Kompetenz und Komfort. In: Biniok P. , ed. Assistive Gesellschaft. Wiesbaden: Springer VS; 2017. (in German): 77-97
  • 58 Krishnan S, Garg A, Patil S. , et al. Transition state clustering: unsupervised surgical trajectory segmentation for robot learning. Int J Robot Res 2017; 36: 1595-1618
  • 59 Winter A, Haux R, Ammenwerth E, Brigl B, Hellrung N, Jahn F. Health Information Systems - Architectures and Strategies. London: Springer; 2011
  • 60 Ball MJ. An overview of total medical information systems. Methods Inf Med 1971; 10 (02) 73-82
  • 61 Lorenzi NM, Riley RT. Organizational Aspects of Health Informatics - Managing Technological Change. New York, NY: Springer; 1995
  • 62 Kuhn KA, Giuse DA. From hospital information systems to health information systems. Problems, challenges, perspectives. Methods Inf Med 2001; 40 (04) 275-287
  • 63 Islam MM, Poly TN, Li YJ. Recent advancement of clinical information systems: opportunities and challenges. Yearb Med Inform 2018; 27 (01) 83-90
  • 64 Fessler JM, Grémy F. Ethical problems in health information systems. Methods Inf Med 2001; 40 (04) 359-361
  • 65 Mayora O, Lukowicz P, Marschollek M. Evolving pervasive health research into clinical practice. Methods Inf Med 2014; 53 (05) 380-381
  • 66 Haux R, Koch S, Lovell NH, Marschollek M, Nakashima N, Wolf KH. Health-enabling and ambient assistive technologies: past, present, future. Yearb Med Inform 2016; 25 (Suppl. 01) S76-S91
  • 67 Haux R. Medical informatics: past, present, future. Int J Med Inform 2010; 79 (09) 599-610
  • 68 Igl G, Welti F. Gesundheitsrecht. Eine systematische Einführung. Munich: Vahlen; 2014. (in German)
  • 69 Ortner R, Daubenbüchel F. Medizinprodukte 4.0. NJW. 2016: 2918-2924 (in German)
  • 70 Federal Institute for Drugs and Medical Devices. Available at: https://www.bfarm.de/EN/MedicalDevices/_node.html https://www.bfarm.de/EN/MedicalDevices/MarketAccess/_node.html . Accessed June 20, 2018
  • 71 Wagner G. In: Säcker FJ, Rixecker R, Oetker H, Limperg B. , eds. Münchener Kommentar zum Bürgerliche Gesetzbuch (Band 4). 2016. ; § 630a recital 1–2 (in German). Munich: Beck.
  • 72 German Federal Supreme Court of Justice. Judgment of June 13, 2006 - VI ZR 323/04 - BGHZ 168, 103–12 (in German)
  • 73 Ratzel R, Lissel PM. Handbuch des Medizinschadensrechts. 2013; § 1 recital 100 ff.; § 3 recital 172 ff. (in German)
  • 74 Weimer T. Straf- und zivilrechtliche Haftung der Anwender und Betreiber von Medizinprodukten - Teil 3. MPR 2007; 119-123 (in German)
  • 75 Eidenmüller H. The rise of robots and the law of humans. ZEuP 2017; 765-777 , recital 776
  • 76 Delvaux-Stehres M. Draft report with recommendations to the Commission on Civil Law Rules on Robotics (2015/2103(INL)) to the European Parliament's Legal Affairs Committee. Available at: http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML%2BCOMPARL%2BPE-582.443%2B01%2BDOC%2BPDF%2BV0//EN . Accessed June 20, 2018
  • 77 Phillips-Wren G, Ichalkaranje N, Jain LC. Intelligent Decision Making: An AI-Based Approach. Heidelberg: Springer; 2008
  • 78 Collingridge D. The Social Control of Technology. Milton Keynes: Open University Press; 1981
  • 79 Frey CB, Osborne MA. The future of employment: how susceptible are jobs to computerisation? Available at: https://www.oxfordmartin.ox.ac.uk/downloads/academic/The_Future_of_Employment.pdf . Accessed September 23, 2018
  • 80 Graetz G, Michaels G. Robots at work. CEPR Discussion Paper 1335, March 2015. Available at: http://cep.lse.ac.uk/pubs/download/dp1335.pdf . Accessed September 23, 2018.
  • 81 Schumpeter JA. Der Prozeß der schöpferischen Zerstörung. In: Herdzina K. , ed. Wettbewerbstheorie. Cologne: Kiepenheuer & Witsch; 1975. (in German)
  • 82 Ricardo D. On the principles of political economy and taxation. In: The Works and Correspondence of David Ricardo. Vol I. Cambridge: Cambridge University Press; 1981
  • 83 Hern A. Give robots 'personhood' status, EU committee argues. The Guardian. January 12, 2017
  • 84 Committee report on rules for robotics, 2015/2103(INL) - 27/01/2017. Committee report tabled for plenary, single reading. Available at: http://www.europarl.europa.eu/oeil/popups/summary.do?id=1473044&t=d&l=en . Accessed September 23, 2018
  • 85 Wiener N. Some moral and technical consequences of automation. Science 1960; 131 (3410): 1355-1358
  • 86 Hubig C. Mensch-Maschine-Interaktion in hybriden Systemen. In: Hubig C, Koslowski P. , eds. Maschinen, die unsere Brüder werden. Mensch-Maschine-Interaktion in hybriden Systemen. Munich: Fink; 2008. (in German): 9-17
  • 87 European Parliament on rules for robotics, 2015/2103(INL) - 16/02/ 2017 . Text adopted by Parliament, single reading. Available at: http://www.europarl.europa.eu/oeil/popups/summary.do?id=1477231&t=d&l=en . Accessed September 23, 2018; High-Level Expert Group on Artificial Intelligence set up by the EU Commission: ETHICS GUIDELINES FOR TRUSTWORTHY AI, Brussels 2019. Available at: https://ec.europa.eu/digital-single-market/en/high-level-expert-group-artificial-intelligence
  • 88 van Bemmel JH. Medical informatics is interdisciplinary avant la lettre. Methods Inf Med 2008; 47 (04) 318-321