J Neurol Surg B Skull Base 2020; 81(05): 536-545
DOI: 10.1055/s-0039-1692474
Original Article

A Classification for the Anterior Inferior Cerebellar Artery—Subarcuate Artery Complex Based on the Embryological Development

1   Department of Neurosurgery, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
,
Pedro Plou
1   Department of Neurosurgery, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
,
Álvaro Campero
2   Department of Neurosurgery, Padilla Hospital, Tucumán, Argentina
,
Pablo Ajler
1   Department of Neurosurgery, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
› Institutsangaben

Abstract

Objective To hierarchize the anterior inferior cerebellar artery (AICA)–subarcuate artery (SAA) complex's variations in the surgical field.

Background The AICA's “subarcuate loop” (SL) presents multiple variations, closely related to the SAA. AICA-SAA complex's variations may represent major issues in cerebellopontine angle (CPA) surgery. As the spectrum of configurations is originated during the development, a systematized classification was proposed based on the interaction between the petrosal bone and the AICA in the embryonic period.

Methods The variations were defined as follow: Grade 0: free, purely cisternal AICA, unidentifiable or absent SAA; Grade 1: purely cisternal AICA, loose SL, SAA > 3 mm; Grade 2: AICA near the subarcuate fossa, pronounced SL, SAA <3 mm; Grade 3: “duralized” AICA, unidentifiable SAA, or included in the petromastoid canal (PMC); and Grade 4: intraosseous AICA, unidentifiable SAA, or included in the PMC. The classification was applied to a series of patients assessed by magnetic resonance constructive interference in steady state sequence. Surgical examples were also provided.

Results Eighty-four patients were evaluated, including 161 CPA. The proportions found in the gradation remained within the range of previous publications (Grade 0: 42.2%; Grade 1: 11.2%; Grade 2: 35.4%; Grade 3: 10.6%; and Grade 4: 0.6%). Moreover, the degrees of the classification were related to the complexity of the anatomical relationships and, therefore, to the difficulty of the maneuvers required to overcome them.

Conclusion The proposed AICA-SAA complex classification allowed to distinguish and objectify pre- and intraoperatively the spectrum of variations, to thoroughly plan the required actions and instrumentation.



Publikationsverlauf

Eingereicht: 14. Februar 2019

Angenommen: 11. Mai 2019

Artikel online veröffentlicht:
21. Juni 2019

Georg Thieme Verlag KG
Stuttgart · New York

 
  • References

  • 1 Rhoton Jr AL. The cerebellopontine angle and posterior fossa cranial nerves by the retrosigmoid approach. Neurosurgery 2000; 47 (3, Suppl): S93-S129
  • 2 Rhoton Jr AL, Tedeschi H. Microsurgical anatomy of acoustic neuroma. 2002. Neurosurg Clin N Am 2008; 19 (02) 145-174 , v
  • 3 Tatagiba M. Retrosigmoid approach to the posterior and middle fossa. In: Ramina R, de Aguiar PHP, Tatagiba M. , eds. Samii's Essentials in Neurosurgery. Stuttgart, Germany: Springer; 2014: 217-235
  • 4 Martin RG, Grant JL, Peace D, Theiss C, Rhoton Jr AL. Microsurgical relationships of the anterior inferior cerebellar artery and the facial-vestibulocochlear nerve complex. Neurosurgery 1980; 6 (05) 483-507
  • 5 Rhoton Jr AL. The cerebellar arteries. Neurosurgery 2000; 47 (3, Suppl): S29-S68
  • 6 Akgun V, Battal B, Bozkurt Y. et al. Normal anatomical features and variations of the vertebrobasilar circulation and its branches: an analysis with 64-detector row CT and 3T MR angiographies. ScientificWorldJournal 2013; 2013: 620162
  • 7 Kazawa N, Togashi K, Ito J. The anatomical classification of AICA/PICA branching and configurations in the cerebellopontine angle area on 3D-drive thin slice T2WI MRI. Clin Imaging 2013; 37 (05) 865-870
  • 8 Kim HN, Kim YH, Park IY, Kim GR, Chung IH. Variability of the surgical anatomy of the neurovascular complex of the cerebellopontine angle. Ann Otol Rhinol Laryngol 1990; 99 (4 Pt 1): 288-296
  • 9 Sampath P, Rini D, Long DM. Microanatomical variations in the cerebellopontine angle associated with vestibular schwannomas (acoustic neuromas): a retrospective study of 1006 consecutive cases. J Neurosurg 2000; 92 (01) 70-78
  • 10 Tekdemir I, Aslan A, Elhan A. The subarcuate canaliculus and its artery--a radioanatomical study. Ann Anat 1999; 181 (02) 207-211
  • 11 Mazzoni A. The subarcuate artery in man. Laryngoscope 1970; 80 (01) 69-79
  • 12 Matsushima T. The subarcuate artery. In: Microsurgical Anatomy and Surgery of the Posterior Cranial Fossa. Tokyo: Springer; 2015: 178-180
  • 13 Proctor B. The petromastoid canal. Ann Otol Rhinol Laryngol 1983; 92 (6 Pt 1): 640-644
  • 14 Skrzat J, Leszczyński B, Kozerska M, Wróbel A. Topography and morphometry of the subarcuate canal. Folia Morphol (Warsz) 2013; 72 (04) 357-361
  • 15 Chen MM, Chen SR, Diaz-Marchan P, Schomer D, Kumar VA. Anterior inferior cerebellar artery strokes based on variant vascular anatomy of the posterior circulation: clinical deficits and imaging territories. J Stroke Cerebrovasc Dis 2018; 27 (04) e59-e64
  • 16 Lescanne E, Velut S, Lefrancq T, Destrieux C. The internal acoustic meatus and its meningeal layers: a microanatomical study. J Neurosurg 2002; 97 (05) 1191-1197
  • 17 Mom T, Chazal J, Gabrillargues J, Gilain L, Avan P. Cochlear blood supply: an update on anatomy and function. Fr ORL 2005; 88: 81-88
  • 18 Akyol Y, Galheigo D, Massimore M, Fatterpekar G. Subarcuate artery and canal: an important anatomic variant. J Comput Assist Tomogr 2011; 35 (06) 688-689
  • 19 Chen K, Lyu H, Yang L, Zhang T, Dai P. Morphological variation of subarcuate artery and canal in atresia. ORL J Otorhinolaryngol Relat Spec 2016; 78 (05) 276-280
  • 20 Grammatica A, Alicandri-Ciufelli M, Molteni G, Marchioni D, Presutti L. Subarcuate canal and artery: a case report. Surg Radiol Anat 2010; 32 (02) 171-174
  • 21 Mazzoni A, Hansen CC. Surgical anatomy of the arteries of the internal auditory canal. Arch Otolaryngol 1970; 91 (02) 128-135
  • 22 Nager GT. Origins and relations of the internal auditory artery and the subarcuate artery. Ann Otol Rhinol Laryngol 1954; 63 (01) 51-61
  • 23 Goel A, Sekhar LN. Anomalous subarcuate loop. Technical note. J Neurosurg 1991; 75 (06) 985-986
  • 24 Tatagiba MS, Evangelista-Zamora R, Lieber S. Mobilization of the anterior inferior cerebellar artery when firmly adherent to the petrous dura mater-a technical nuance in retromastoid transmeatal vestibular schwannoma surgery: 3-dimensional operative video. Oper Neurosurg (Hagerstown) 2018; 15 (05) E58-E59
  • 25 Warren DT, Warren MD, Malfair D, Akagami R. An incidence of anteroinferior cerebellar artery/posteroinferior cerebellar artery anatomic variants penetrating the subarcuate fossa dura: operative technique and identification with 3-dimensional fast imaging employing steady-state acquisition magnetic resonance imaging. Neurosurgery 2010;66(6, Suppl Operative):199–203, discussion 204
  • 26 Campero Á, Rasmussen J, Diloné J, Ajler P, Elizalde RL. [Drilling of the subarcuate fossa to release the anterior inferior cerebellar artery in a surgery of a vestibular Schwannoma]. Surg Neurol Int 2018; 9 (Suppl. 03) S66-S72
  • 27 Erdogan N, Altay C, Akay E. et al. MRI assessment of internal acoustic canal variations using 3D-FIESTA sequences. Eur Arch Otorhinolaryngol 2013; 270 (02) 469-475
  • 28 Ovenden C, Barker O, Bramwell J. et al. Bilateral aberrant infratentorial vasculature : a rare cadaveric encounter. Eur J Anat 2015; 19 (03) 295-298
  • 29 Tanriover N, Rhoton Jr AL. The anteroinferior cerebellar artery embedded in the subarcuate fossa: a rare anomaly and its clinical significance. Neurosurgery 2005; 57 (02) 314-319 , discussion 314–319
  • 30 Som PM, Curtin HD, Liu K, Mafee MF. Current embryology of the temporal bone, part I: the inner ear. Neurographics 2016; 6 (04) 250-265
  • 31 Hilding DA. Petrous apex and subarcuate fossa maturation. Laryngoscope 1987; 97 (10) 1129-1135
  • 32 Menshawi K, Mohr JP, Gutierrez J. A functional perspective on the embryology and anatomy of the cerebral blood supply. J Stroke 2015; 17 (02) 144-158
  • 33 Nemzek WR, Brodie HA, Chong BW. et al. Imaging findings of the developing temporal bone in fetal specimens. AJNR Am J Neuroradiol 1996; 17 (08) 1467-1477
  • 34 Kenis C, Ditchfield M, Paul E, Parizel PM, Stuckey S. The petromastoid canal in the young child: appearance on computed tomography. Int J Pediatr Otorhinolaryngol 2013; 77 (05) 803-807
  • 35 Koral K, Vachha B, Gimi B. et al. MRI of the petromastoid canal in children. J Magn Reson Imaging 2014; 39 (04) 966-971
  • 36 Maślanka M, Skadorwa T, Ciszek B. Postnatal development of the subarcuate fossa and subarcuate canaliculus-a computed tomographic study. Surg Radiol Anat 2018; 40 (10) 1111-1117
  • 37 Migirov L, Kronenberg J. Radiology of the petromastoid canal. Otol Neurotol 2006; 27 (03) 410-413
  • 38 Tomaszewski KA, Henry BM, Kumar Ramakrishnan P. et al. Development of the Anatomical Quality Assurance (AQUA) checklist: guidelines for reporting original anatomical studies. Clin Anat 2017; 30 (01) 14-20
  • 39 Peacock JL, Peacock PJ. Sample size for estimation studies: proportions. In: Oxford Handbook of Medical Statics. New York, USA: Oxford University Press, Inc.; 2011: 60-61
  • 40 Haidara A, Peltier J, Zunon-Kipré Y, N'da HA, Drogba L, Gars DL. Microsurgical anatomy of the labyrinthine artery and clinical relevance. Turk Neurosurg 2015; 25 (04) 539-543
  • 41 Rodríguez-Hernández A, Rhoton Jr AL, Lawton MT. Segmental anatomy of cerebellar arteries: a proposed nomenclature. Laboratory investigation. J Neurosurg 2011; 115 (02) 387-397
  • 42 Held P, Fellner C, Fellner F, Seitz J, Strutz J. MRI of inner ear anatomy using 3D MP-RAGE and 3D CISS sequences. Br J Radiol 1997; 70 (833) 465-472
  • 43 Casselman JW, Kuhweide R, Deimling M, Ampe W, Dehaene I, Meeus L. Constructive interference in steady state-3DFT MR imaging of the inner ear and cerebellopontine angle. AJNR Am J Neuroradiol 1993; 14 (01) 47-57
  • 44 Graf H, Schick F, Claussen CD, Seemann MD. MR visualization of the inner ear structures: comparison of 1.5 Tesla and 3 Tesla images. RoFo Fortschr Geb Rontgenstr Nuklearmed 2004; 176 (01) 17-20
  • 45 Naganawa S, Koshikawa T, Nakamura T, Fukatsu H, Ishigaki T, Aoki I. High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material. Eur Radiol 2003; 13 (12) 2650-2658
  • 46 Chung EC, Choi HY, Lee JS, Ko EJ, Lee MS. Constructive interference in steady state(CISS) 3DFT MR imaging of the inner ear and adjacent structures. J Korean Radiol Soc 1997; 36 (03) 385-391
  • 47 Som PM, Curtin HD, Liu K, Mafee MF. Current embryology of the temporal bone, part II: the middle and external ears, the statoacoustic and facial nerves, and when things go developmentally wrong. Neurographics 2016; 6 (05) 332-349
  • 48 Kim JS, Lopez I, Liu F, DiPatre PL, Baloh RW, Ishiyama A. Internal auditory artery infarction: clinicopathologic correlation. Neurology 2012; 52 (01) 40-40
  • 49 Kim JS, Cho KH, Lee H. Isolated labyrinthine infarction as a harbinger of anterior inferior cerebellar artery territory infarction with normal diffusion-weighted brain MRI. J Neurol Sci 2009; 278 (1-2): 82-84
  • 50 Mom T, Telischi FF, Martin GK, Stagner BB, Lonsbury-Martin BL. Vasospasm of the internal auditory artery: significance in cerebellopontine angle surgery. Am J Otol 2000; 21 (05) 735-742
  • 51 Sando I, Ogawa A, Jafek BW. Inner ear pathology following injury to the eighth cranial nerve and the labyrinthine artery. Ann Otol Rhinol Laryngol 1982; 91 (2 Pt 1): 136-141
  • 52 Mehdorn HM, Buhl RM. Petrous meningiomas I: an overview. In: Meningiomas. London: Springer London; 2009: 433-441
  • 53 Samii M, Tatagiba M, Carvalho GA. Resection of large petroclival meningiomas by the simple retrosigmoid route. J Clin Neurosci 1999; 6 (01) 27-30
  • 54 Singh N, Singh DK, Ahmad F, Kumar R. The retrosigmoid approach: workhorse for petroclival meningioma surgery. Asian J Neurosurg 2019; 14 (01) 188-192
  • 55 Ferroli P, Messina G, Franzini A, Broggi G. VII-VIII nerve complex hung up by the subarcuate artery: a cause of hemifacial spasm. Acta Neurochir (Wien) 2007; 149 (06) 633-635 , discussion 635
  • 56 Cheng C-Y, Shetty R, Martinez V, Sekhar LN. Microvascular decompression of facial nerve and pexy of the left vertebral artery for left hemifacial spasm: 3-dimensional operative video. Oper Neurosurg (Hagerstown) 2019; 16 (01) E2-E3
  • 57 Rodríguez-Hernández A, Zador Z, Rodríguez-Mena R, Lawton MT. Distal aneurysms of intracranial arteries: application of numerical nomenclature, predilection for cerebellar arteries, and results of surgical management. World Neurosurg 2013; 80 (1-2): 103-112
  • 58 Andaluz N, Pensak ML, Zuccarello M. Multiple, peripheral aneurysms of the anterior inferior cerebellar artery. Acta Neurochir (Wien) 2005; 147 (04) 419-422 , discussion 422
  • 59 Sun Y, Wrede KH, Chen Z, Bao Y, Ling F. Ruptured intrameatal AICA aneurysms--a report of two cases and review of the literature. Acta Neurochir (Wien) 2009; 151 (11) 1525-1530
  • 60 Takeuchi S, Takasato Y, Masaoka H. et al. [Trapping of ruptured dissecting aneurysm of distal anterior inferior cerebellar artery--case report]. Brain Nerve 2009; 61 (02) 203-207
  • 61 Tokimura H, Ishigami T, Yamahata H. et al. Clinical presentation and treatment of distal anterior inferior cerebellar artery aneurysms. Neurosurg Rev 2012; 35 (04) 497-503 , discussion 503–504
  • 62 Saito A, Nishino A, Suzuki I. et al. Subarachnoid hemorrhage caused by rupture of a distal anterior inferior cerebellar artery aneurysm--three case reports. Neurol Med Chir (Tokyo) 2008; 48 (11) 506-511
  • 63 Guzman R, Grady MS. An intracranial aneurysm on the feeding artery of a cerebellar hemangioblastoma. Case report. J Neurosurg 1999; 91 (01) 136-138
  • 64 Suzuki T, Okamoto K, Genkai N, Ito Y, Abe H. Multiple aneurysms on the subarcuate artery arising from the anterior inferior cerebellar artery in a patient with a Borden type I transverse-sigmoid dural arteriovenous fistula manifesting as subarachnoid hemorrhage: a case report. Interv Neuroradiol 2019; 25 (01) 90-96
  • 65 Menovsky T, André Grotenhuis J, Bartels RHMA. Aneurysm of the anterior inferior cerebellar artery (AICA) associated with high-flow lesion: report of two cases and review of literature. J Clin Neurosci 2002; 9 (02) 207-211
  • 66 Lee SJ, Koh JS, Ryu CW, Lee SH. Ruptured intrameatal aneurysm of the anterior inferior cerebellar artery accompanying an arteriovenous malformation: a case report. Cerebellum 2012; 11 (03) 808-812
  • 67 Bambakidis NC, Manjila S, Dashti S, Tarr R, Megerian CA. Management of anterior inferior cerebellar artery aneurysms: an illustrative case and review of literature. Neurosurg Focus 2009; 26 (05) E6
  • 68 Gi H, Inoha S, Uno J. et al. [Four cases of direct surgery for anterior inferior cerebellar artery aneurysms]. No Shinkei Geka 2007; 35 (06) 571-578
  • 69 Fujimura M, Inoue T, Shimizu H, Tominaga T. Occipital artery-anterior inferior cerebellar artery bypass with microsurgical trapping for exclusively intra-meatal anterior inferior cerebellar artery aneurysm manifesting as subarachnoid hemorrhage. Case report. Neurol Med Chir (Tokyo) 2012; 52 (06) 435-438
  • 70 Remenschneider AK, Kozin ED, Curtin H, Santos F. Histopathology of idiopathic lateral skull base defects. Laryngoscope 2015; 125 (08) 1798-1806