CC BY-NC-ND 4.0 · Organic Materials 2019; 01(01): 050-062
DOI: 10.1055/s-0039-1700847
Original Article
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2019) The Author(s).

Triptycene End-Capped Quinoxalinophenanthrophenazines with Aromatic Substituents – Synthesis, Characterization, and Single-Crystal Structure Analysis

Lucas Ueberricke
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany, eMail: Michael.mastalerz@oci.uni-heidelberg.de
,
Sonja Wieland
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany, eMail: Michael.mastalerz@oci.uni-heidelberg.de
,
Frank Rominger
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany, eMail: Michael.mastalerz@oci.uni-heidelberg.de
,
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany, eMail: Michael.mastalerz@oci.uni-heidelberg.de
› Institutsangaben
Funding Information Collaborative research center SFB1249 on N-heteropolycycles as functional materials funded by “Deutsche Forschungsgemeinschaft”.
Weitere Informationen

Publikationsverlauf

03. Juli 2019

26. August 2019

Publikationsdatum:
02. Dezember 2019 (online)


Abstract

In a previous study, we found that one-fold triptycene end-capped quinoxalinophenanthrophenazines (QPPs) arrange in crystals preferably in a coplanar fashion providing high overlap of the π-planes. Thus, resulting in high calculated charge transfer integrals. Most interestingly, this motif was observed for a variety of QPPs derivatives, independently of the nature of their peripheral substituents, e.g. bromide, methoxy, cyano, or triisopropylsilylethynyl groups, and of the crystallization conditions. Here, we describe the synthesis of another small series of three QPPs containing different aromatic substituents at the same position to get an insight, whether these aromatic substituents disturb the otherwise preferred π stacking of the QPP planes.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0039-1700847.


Supporting Information

 
  • References

  • 1 Gavezzotti A. Acc. Chem. Res. 1994; 27: 309-314
  • 2 Nyman J, Reutzel-Edens SM. Faraday Discuss. 2018; 211: 459-476
  • 3 Price SL, Price LS. Toward Computational Polymorph Prediction. In: Polymorphism in the Pharmaceutical Industry: Solid Form and Drug Development. Hilfiker R, von Raumer M. , eds; Viley-VCH; Weinheim: 2018
  • 4 Day GM. Advances in Crystal Structure Prediction and Applications to Pharmaceutical Materials. In: Computational Pharmaceutical Solid State Chemistry. Abramov YA. , ed.; Viley-VCH; Weinheim: 2016
    • 5
    • 5a Beran GJ. O. Angew. Chem. Int. Ed. 2015; 54: 396-398
    • 5b Beran GJ. O. Angew. Chem. 2015; 127: 406-408
  • 7 Cavallo G, Metrangolo P, Milani R. , et al. Chem. Rev. 2016; 116 (04) 2478-2601
  • 8 Desiraju GR, Parthasarathy R. J. Am. Chem. Soc. 1989; 111: 8725-8726
  • 9 Hunter CA, Sanders JK. M. J. Am. Chem. Soc. 1990; 112: 5525-5534
  • 10 Martinez CR, Iverson BL. Chem. Sci. (Camb) 2012; 3: 2191-2201
  • 11 Janiak C. J. Chem. Soc., Dalton Trans. 2000; 3885-3896
    • 12
    • 12a Wagner JP, Schreiner PR. Angew. Chem. Int. Ed. 2015; 54: 12274-12296
    • 12b Wagner JP, Schreiner PR. Angew. Chem. 2015; 127: 12446-12471
  • 13 Brédas JL, Calbert JP, da Silva Filho DA, Cornil J. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 5804-5809
  • 14 Reese C, Bao Z. J. Mater. Chem. 2006; 16: 329-333
  • 15 Abbott LJ, McDermott AG, Del Regno A. , et al. J. Phys. Chem. B. 2013; 117: 355-364
  • 16 Abbott LJ, McKeown NB, Colina CM. J. Mater. Chem. A. Mater. Energy Sustain. 2013; 1: 11950-11960
  • 17 Del Regno A, Siperstein FR, Taylor RGD, McKeown NB. Microporous Mesoporous Mater. 2013; 179: 265
  • 18 Kohl B, Rominger F, Mastalerz M. Org. Lett. 2014; 16: 704-707
  • 19 Kohl B, Rominger F, Mastalerz M. Chem. Eur. J. 2015; 21: 17308-17313
  • 20 Reinhard D, Rominger F, Mastalerz M. J. Org. Chem. 2015; 80: 9342-9348
  • 21 Reinhard D, Zhang W-S, Rominger F. , et al. Chem. Eur. J. 2018; 24: 11433-11437
  • 22 Prantl E, Kohl B, Ryvlin D, Biegger P, Wadepohl H, Rominger F, Bunz UH. F, Mastalerz M, Waldvogel SR. ChemPlusChem 2019; 84: 1239-1244
  • 23 Kohl B, Bohnwagner MV, Rominger F, Wadepohl H, Dreuw A, Mastalerz M. Chem. Eur. J. 2016; 22: 646-655
  • 24 Ueberricke L, Holub D, Kranz J, Rominger F, Elstner M, Mastalerz M. Chem. Eur. J. 2019; 25: 11121-11134
  • 25 Schleper AL, Voll C.-CA, Engelhart JU, Swager TM. Synlett 2017; 28: 2783-2789
  • 26 Littke AF, Dai C, Fu GC. J. Am. Chem. Soc. 2000; 122: 4020-4028
  • 27 Heiskanen JP, Vivo P, Saari NM. , et al. J. Org. Chem. 2016; 81: 1535-1546
  • 28 Neto BA. D, Lopes AS, Wüst M, Costa VEU, Ebeling G, Dupont J. Tetrahedron Lett. 2005; 46: 6843-6846
  • 29 Mancilha FS, DaSilveira Neto BA, Lopes AS. , et al. Eur. J. Org. Chem. 2006; 2006: 4924-4933
  • 30 Li AD. Q, Wang W, Wang L.-Q. Chem. Eur. J. 2003; 9: 4594-4601
  • 31 Kulisic N, More S, Mateo-Alonso A. Chem. Commun. (Camb.) 2011; 47: 514-516
  • 32 Bredas JL. Mater. Horiz. 2014; 1: 17-19
  • 33 Saeed MA, Le HT. M, Miljanić OŠ. Acc. Chem. Res. 2014; 47: 2074-2083
  • 34 Martínez-Martínez V, Lim J, Bañuelos J, López-Arbeloa I, Miljanić OŠ. Phys. Chem. Chem. Phys. 2013; 15: 18023-18029
  • 35 Zucchero AJ, McGrier PL, Bunz UH. F. Acc. Chem. Res. 2010; 43: 397-408
  • 36 Zucchero AJ, Wilson JN, Bunz UH. F. J. Am. Chem. Soc. 2006; 128: 11872-11881
  • 37 Row TN. G, Parthasarathy R. J. Am. Chem. Soc. 1981; 103: 477-479
  • 38 Antonijević IS, Janjić GV, Milčić MK, Zarić SD. Cryst. Growth Des. 2016; 16: 632-639
  • 39 van der Sluis P, Spek AL. Acta Crystallogr A 1990; 46: 194-201
  • 40 Spek AL. Acta Crystallogr., Sect. D 2009; 65: 148-155
    • 41
    • 41a Cyr DM, Venkataraman B, Flynn GW. Chem. Mater. 1996; 8: 1600-1615
    • 41b Baumgärtner K, Meza-Chincha AL, Dreuw A, Rominger F, Mastalerz M. Angew. Chem. Int. Ed. 2016; 55: 15594-15598
  • 42 Wood PA, Borwick SJ, Watkin DJ, Motherwell WDS, Allen FH. Acta Crystallogr., Sect. B 2008; 64: 393-396
  • 43 Reddy DS, Ovchinnikov YE, Shishkin OV, Struchkov YT, Desiraju GR. J. Am. Chem. Soc. 1996; 118: 4085-4089
  • 44 Wang H, Wang W, Jin WJ. Chem. Rev. 2016; 116: 5072-5104
  • 45 DeRose PC, Early EA, Kramer GW. Rev. Sci. Instrum. 2007; 78: 033107
  • 46 Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U. Nat. Protoc. 2013; 8: 1535-1550
  • 47 CrysAlisPro. Agilent Technologies; Oxford (UK); 2011–2014
  • 48 Busing WR, Levy HA. Acta Crystallogr. 1957; 10: 180-182
    • 49
    • 49a Sheldrick GM. , SHELXT, University of Göttingen and Bruker AXS GmbH, Karlsruhe (Germany), 2012-2014
    • 49b Ruf M, Noll BC. . Application Note SC-XRD 503, Bruker AXS GmbH, Karlsruhe (Germany), 2014
    • 49c Sheldrick G. Acta Crystallogr., Sect. A 2015; 71: 3-8
  • 50 Burla MC, Caliandro R, Camalli M. , et al. J. Appl. Cryst. 2007; 40: 609-613
    • 51
    • 51a Sheldrick GM. , SHELXL-20xx, University of Göttingen and Bruker AXS GmbH, Karlsruhe (Germany) 2012-2014
    • 51b Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112-122