Semin Liver Dis 2020; 40(02): 131-142
DOI: 10.1055/s-0039-3399534
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Impact of Viral Etiologies on the Development of Novel Immunotherapy for Hepatocellular Carcinoma

Chun Jye Lim
1   Translational Immunology Institute (TII), SingHealth-Duke-NUS Academic Medical Centre, Singapore, Singapore
,
Valerie Chew
1   Translational Immunology Institute (TII), SingHealth-Duke-NUS Academic Medical Centre, Singapore, Singapore
› Institutsangaben
Funding This work was supported by the National Medical Research Council (NMRC), Singapore (ref numbers: TCR15Jun006, CIRG16may048, CSAS16Nov006, CSASI17may003, and LCG17MAY003).
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
06. Dezember 2019 (online)

Abstract

Hepatocellular carcinoma (HCC), is the most common type of liver cancer which is derived mostly from the background of chronic inflammation. Chronic hepatitis viral infection remains one of the most common etiologies implicated in chronic liver inflammation, cirrhosis, and HCC. With such background inflammation, immunotherapy—particularly the checkpoint inhibitors—have been tested in HCC patients with unprecedented success. However, despite the initial enthusiasm, the response rate to immunotherapy remains modest in most clinical trials (approximately 20%), with mixed reports on response rates in hepatitis viral-related HCC as compared with nonviral HCC. Given such complexity in response to immunotherapy, it is increasingly appreciated that deeper understanding of the tumor molecular features and tumor microenvironment of hepatitis viral-related HCC is crucial for the design of more effective immunotherapeutics. We discuss herein the current knowledge in tumor genomic mutational and immune landscapes as well as the ongoing immunotherapy trials in HCC with the unique focus on their viral etiologies. Based on this understanding, we also outline perspectives and rationale on the design of potential immunotherapeutic strategies in HCC patients according to their viral etiologies.

 
  • References

  • 1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68 (06) 394-424
  • 2 El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012; 142 (06) 1264-1273.e1
  • 3 Abbas Z, Abbas M, Abbas S, Shazi L. Hepatitis D and hepatocellular carcinoma. World J Hepatol 2015; 7 (05) 777-786
  • 4 Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014; 14 (02) 135-146
  • 5 Schinzari V, Barnaba V, Piconese S. Chronic hepatitis B virus and hepatitis C virus infections and cancer: synergy between viral and host factors. Clin Microbiol Infect 2015; 21 (11) 969-974
  • 6 Liang TJ. Hepatitis B: the virus and disease. Hepatology 2009; 49 (5, Suppl): S13-S21
  • 7 Ringelhan M, Protzer U. Oncogenic potential of hepatitis B virus encoded proteins. Curr Opin Virol 2015; 14: 109-115
  • 8 Simonetti J, Bulkow L, McMahon BJ. , et al. Clearance of hepatitis B surface antigen and risk of hepatocellular carcinoma in a cohort chronically infected with hepatitis B virus. Hepatology 2010; 51 (05) 1531-1537
  • 9 Livingston SE, Simonetti JP, Bulkow LR. , et al. Clearance of hepatitis B antigen in patients with chronic hepatitis B and genotypes A, B, C, D, and F. Gastroenterology 2007; 133 (05) 1452-1457
  • 10 Chiu YT, Wong JK, Choi SW. , et al. Novel pre-mRNA splicing of intronically integrated HBV generates oncogenic chimera in hepatocellular carcinoma. J Hepatol 2016; 64 (06) 1256-1264
  • 11 Furuta M, Tanaka H, Shiraishi Y. , et al. Characterization of HBV integration patterns and timing in liver cancer and HBV-infected livers. Oncotarget 2018; 9 (38) 25075-25088
  • 12 Qasim W, Brunetto M, Gehring AJ. , et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J Hepatol 2015; 62 (02) 486-491
  • 13 Tan AT, Yang N, Lee Krishnamoorthy T. , et al. Use of expression profiles of HBV-DNA integrated into genomes of hepatocellular carcinoma cells to select T cells for immunotherapy. Gastroenterology 2019; 156 (06) 1862-1876.e9
  • 14 Li HC, Lo SY. Hepatitis C virus: virology, diagnosis and treatment. World J Hepatol 2015; 7 (10) 1377-1389
  • 15 Stoll-Keller F, Barth H, Fafi-Kremer S, Zeisel MB, Baumert TF. Development of hepatitis C virus vaccines: challenges and progress. Expert Rev Vaccines 2009; 8 (03) 333-345
  • 16 Friedman RM, Contente S. Treatment of hepatitis C infections with interferon: a historical perspective. Hepat Res Treat 2010; 2010: 323926
  • 17 Majumdar A, Kitson MT, Roberts SK. Systematic review: current concepts and challenges for the direct-acting antiviral era in hepatitis C cirrhosis. Aliment Pharmacol Ther 2016; 43 (12) 1276-1292
  • 18 Chung RT, Baumert TF. Curing chronic hepatitis C—the arc of a medical triumph. N Engl J Med 2014; 370 (17) 1576-1578
  • 19 Cabibbo G, Celsa C, Cammà C, Craxì A. Should we cure hepatitis C virus in patients with hepatocellular carcinoma while treating cancer?. Liver Int 2018; 38 (12) 2108-2116
  • 20 Reig M, Mariño Z, Perelló C. , et al. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J Hepatol 2016; 65 (04) 719-726
  • 21 Conti F, Buonfiglioli F, Scuteri A. , et al. Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals. J Hepatol 2016; 65 (04) 727-733
  • 22 Kozbial K, Moser S, Schwarzer R. , et al. Unexpected high incidence of hepatocellular carcinoma in cirrhotic patients with sustained virologic response following interferon-free direct-acting antiviral treatment. J Hepatol 2016; 65 (04) 856-858
  • 23 Maan R, Feld JJ. Risk for hepatocellular carcinoma after hepatitis C virus antiviral therapy with direct-acting antivirals: case closed?. Gastroenterology 2017; 153 (04) 890-892
  • 24 Sung WK, Zheng H, Li S. , et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 2012; 44 (07) 765-769
  • 25 Cancer Genome Atlas Research Network. Electronic address: wheeler@bcm.edu; Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017; 169: 1327-1341
  • 26 Hoshida Y, Villanueva A, Sangiovanni A. , et al. Prognostic gene expression signature for patients with hepatitis C-related early-stage cirrhosis. Gastroenterology 2013; 144 (05) 1024-1030
  • 27 Abu Dayyeh BK, Yang M, Fuchs BC. , et al; HALT-C Trial Group. A functional polymorphism in the epidermal growth factor gene is associated with risk for hepatocellular carcinoma. Gastroenterology 2011; 141 (01) 141-149
  • 28 Wang Y, Kato N, Hoshida Y. , et al. Interleukin-1beta gene polymorphisms associated with hepatocellular carcinoma in hepatitis C virus infection. Hepatology 2003; 37 (01) 65-71
  • 29 Zong L, Peng H, Sun C. , et al. Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice. Nat Commun 2019; 10 (01) 221
  • 30 Rehermann B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med 2013; 19 (07) 859-868
  • 31 Shimizu Y. T cell immunopathogenesis and immunotherapeutic strategies for chronic hepatitis B virus infection. World J Gastroenterol 2012; 18 (20) 2443-2451
  • 32 Schuch A, Hoh A, Thimme R. The role of natural killer cells and CD8(+) T cells in hepatitis B virus infection. Front Immunol 2014; 5: 258
  • 33 Hu L, Zhai X, Liu J. , et al. Genetic variants in human leukocyte antigen/DP-DQ influence both hepatitis B virus clearance and hepatocellular carcinoma development. Hepatology 2012; 55 (05) 1426-1431
  • 34 Tong HV, Toan NL, Song LH, Bock CT, Kremsner PG, Velavan TP. Hepatitis B virus-induced hepatocellular carcinoma: functional roles of MICA variants. J Viral Hepat 2013; 20 (10) 687-698
  • 35 Gu X, Qi P, Zhou F. , et al. +49G > A polymorphism in the cytotoxic T-lymphocyte antigen-4 gene increases susceptibility to hepatitis B-related hepatocellular carcinoma in a male Chinese population. Hum Immunol 2010; 71 (01) 83-87
  • 36 Tang S, Yuan Y, He Y. , et al. Genetic polymorphism of interleukin-6 influences susceptibility to HBV-related hepatocellular carcinoma in a male Chinese Han population. Hum Immunol 2014; 75 (04) 297-301
  • 37 Hoshida Y, Fuchs BC, Bardeesy N, Baumert TF, Chung RT. Pathogenesis and prevention of hepatitis C virus-induced hepatocellular carcinoma. J Hepatol 2014; 61 (1, Suppl): S79-S90
  • 38 Kumar V, Kato N, Urabe Y. , et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet 2011; 43 (05) 455-458
  • 39 Bauer S, Groh V, Wu J. , et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285 (5428): 727-729
  • 40 Yarchoan M, Xing D, Luan L. , et al. Characterization of the immune microenvironment in hepatocellular carcinoma. Clin Cancer Res 2017; 23 (23) 7333-7339
  • 41 Goodman AM, Kato S, Bazhenova L. , et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 2017; 16 (11) 2598-2608
  • 42 Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017; 377 (25) 2500-2501
  • 43 Ahn SM, Jang SJ, Shim JH. , et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology 2014; 60 (06) 1972-1982
  • 44 El-Khoueiry AB, Sangro B, Yau T. , et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389 (10088): 2492-2502
  • 45 Goossens N, Sun X, Hoshida Y. Molecular classification of hepatocellular carcinoma: potential therapeutic implications. Hepat Oncol 2015; 2 (04) 371-379
  • 46 Zhai W, Lim TK, Zhang T. , et al. The spatial organization of intra-tumour heterogeneity and evolutionary trajectories of metastases in hepatocellular carcinoma. Nat Commun 2017; 8: 4565
  • 47 Chew V, Chen J, Lee D. , et al. Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut 2012; 61 (03) 427-438
  • 48 Chew V, Lai L, Pan L. , et al. Delineation of an immunosuppressive gradient in hepatocellular carcinoma using high-dimensional proteomic and transcriptomic analyses. Proc Natl Acad Sci U S A 2017; 114 (29) E5900-E5909
  • 49 Nishida N, Kudo M. Immunological microenvironment of hepatocellular carcinoma and its clinical implication. Oncology 2017; 92 (Suppl. 01) 40-49
  • 50 Yang P, Markowitz GJ, Wang XF. The hepatitis B virus-associated tumor microenvironment in hepatocellular carcinoma. Natl Sci Rev 2014; 1 (03) 396-412
  • 51 Fu J, Xu D, Liu Z. , et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 2007; 132 (07) 2328-2339
  • 52 Stoop JN, van der Molen RG, Baan CC. , et al. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection. Hepatology 2005; 41 (04) 771-778
  • 53 Yang P, Li QJ, Feng Y. , et al. TGF-β-miR-34a-CCL22 signaling-induced Treg cell recruitment promotes venous metastases of HBV-positive hepatocellular carcinoma. Cancer Cell 2012; 22 (03) 291-303
  • 54 Ye B, Liu X, Li X, Kong H, Tian L, Chen Y. T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis 2015; 6: e1694
  • 55 Li H, Wu K, Tao K. , et al. Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology 2012; 56 (04) 1342-1351
  • 56 Li FJ, Zhang Y, Jin GX, Yao L, Wu DQ. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8(+) T cell in HCC patients. Immunol Lett 2013; 150 (1-2): 116-122
  • 57 Nakamoto N, Cho H, Shaked A. , et al. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog 2009; 5 (02) e1000313
  • 58 Nakamoto N, Kaplan DE, Coleclough J. , et al. Functional restoration of HCV-specific CD8 T cells by PD-1 blockade is defined by PD-1 expression and compartmentalization. Gastroenterology 2008; 134 (07) 1927-1937 , 1937.e1–1937.e2
  • 59 Piconese S, Timperi E, Pacella I. , et al. Human OX40 tunes the function of regulatory T cells in tumor and nontumor areas of hepatitis C virus-infected liver tissue. Hepatology 2014; 60 (05) 1494-1507
  • 60 Liu P, Chen L, Zhang H. Natural killer cells in liver disease and hepatocellular carcinoma and the NK cell-based immunotherapy. J Immunol Res 2018; 2018: 1206737
  • 61 Oliviero B, Varchetta S, Paudice E. , et al. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology 2009; 137 (03) 1151-1160 , 1160.e1–1160.e7
  • 62 Sun C, Sun HY, Xiao WH, Zhang C, Tian ZG. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharmacol Sin 2015; 36 (10) 1191-1199
  • 63 Boltjes A, Movita D, Boonstra A, Woltman AM. The role of Kupffer cells in hepatitis B and hepatitis C virus infections. J Hepatol 2014; 61 (03) 660-671
  • 64 Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121 (07) 977-990
  • 65 Hagen TM, Huang S, Curnutte J. , et al. Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc Natl Acad Sci U S A 1994; 91 (26) 12808-12812
  • 66 Yu LX, Ling Y, Wang HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol 2018; 2 (01) 6
  • 67 Yeung OW, Lo CM, Ling CC. , et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol 2015; 62 (03) 607-616
  • 68 Kuang DM, Zhao Q, Peng C. , et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 2009; 206 (06) 1327-1337
  • 69 Lim CJ, Lee YH, Pan L. , et al. Multidimensional analyses reveal distinct immune microenvironment in hepatitis B virus-related hepatocellular carcinoma. Gut 2019; 68 (05) 916-927
  • 70 Aalaei-Andabili SH, Alavian SM. Regulatory T cells are the most important determinant factor of hepatitis B infection prognosis: a systematic review and meta-analysis. Vaccine 2012; 30 (38) 5595-5602
  • 71 Pallett LJ, Davies J, Colbeck EJ. , et al. IL-2 high tissue-resident T cells in the human liver: sentinels for hepatotropic infection. J Exp Med 2017; 214 (06) 1567-1580
  • 72 Sun C, Fu B, Gao Y. , et al. TGF-β1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog 2012; 8 (03) e1002594
  • 73 Zhu AX, Finn RS, Edeline J. , et al; KEYNOTE-224 investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018; 19 (07) 940-952
  • 74 Hoseini SS, Cheung NV. Immunotherapy of hepatocellular carcinoma using chimeric antigen receptors and bispecific antibodies. Cancer Lett 2017; 399: 44-52
  • 75 Gehring AJ, Ho ZZ, Tan AT. , et al. Profile of tumor antigen-specific CD8 T cells in patients with hepatitis B virus-related hepatocellular carcinoma. Gastroenterology 2009; 137 (02) 682-690
  • 76 Fu S, Li N, Zhou PC, Huang Y, Zhou RR, Fan XG. Detection of HBV DNA and antigens in HBsAg-positive patients with primary hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2017; 41 (04) 415-423
  • 77 Wang Y, Wu MC, Sham JS. , et al. Different expression of hepatitis B surface antigen between hepatocellular carcinoma and its surrounding liver tissue, studied using a tissue microarray. J Pathol 2002; 197 (05) 610-616
  • 78 Vandepapelière P, Lau GK, Leroux-Roels G. , et al; Therapeutic HBV Vaccine Group of Investigators. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: a randomized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine 2007; 25 (51) 8585-8597
  • 79 Sautto GA, Wisskirchen K, Clementi N. , et al. Chimeric antigen receptor (CAR)-engineered T cells redirected against hepatitis C virus (HCV) E2 glycoprotein. Gut 2016; 65 (03) 512-523
  • 80 Takayama T, Sekine T, Makuuchi M. , et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 2000; 356 (9232): 802-807
  • 81 Xu L, Wang J, Kim Y. , et al. A randomized controlled trial on patients with or without adjuvant autologous cytokine-induced killer cells after curative resection for hepatocellular carcinoma. OncoImmunology 2015; 5 (03) e1083671
  • 82 Lee JH, Lee JH, Lim YS. , et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 2015; 148 (07) 1383-91.e6
  • 83 Chew V, Tow C, Huang C. , et al. Toll-like receptor 3 expressing tumor parenchyma and infiltrating natural killer cells in hepatocellular carcinoma patients. J Natl Cancer Inst 2012; 104 (23) 1796-1807
  • 84 Ohira M, Nishida S, Tryphonopoulos P. , et al. Clinical-scale isolation of interleukin-2-stimulated liver natural killer cells for treatment of liver transplantation with hepatocellular carcinoma. Cell Transplant 2012; 21 (07) 1397-1406
  • 85 Daher M, Rezvani K. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Opin Immunol 2018; 51: 146-153
  • 86 Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 2016; 13 (03) 277-292
  • 87 Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010; 10 (11) 753-766
  • 88 Knolle PA, Thimme R. Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology 2014; 146 (05) 1193-1207
  • 89 Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol 2017; 7: 195
  • 90 Jhawar SR, Thandoni A, Bommareddy PK. , et al. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front Oncol 2017; 7: 202
  • 91 Yoo SY, Badrinath N, Woo HY, Heo J. Oncolytic virus-based immunotherapies for hepatocellular carcinoma. Mediators Inflamm 2017; 2017: 5198798
  • 92 Park BH, Hwang T, Liu TC. , et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 2008; 9 (06) 533-542
  • 93 Heo J, Reid T, Ruo L. , et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 2013; 19 (03) 329-336
  • 94 LaRocca CJ, Warner SG. Oncolytic viruses and checkpoint inhibitors: combination therapy in clinical trials. Clin Transl Med 2018; 7 (01) 35
  • 95 Liu TC, Hwang T, Park BH, Bell J, Kirn DH. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther 2008; 16 (09) 1637-1642
  • 96 Buonaguro L, Petrizzo A, Tagliamonte M, Tornesello ML, Buonaguro FM. Challenges in cancer vaccine development for hepatocellular carcinoma. J Hepatol 2013; 59 (04) 897-903
  • 97 Butterfield LH, Ribas A, Dissette VB. , et al. A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin Cancer Res 2006; 12 (09) 2817-2825
  • 98 Wang X, Wang Q. Alpha-fetoprotein and hepatocellular carcinoma immunity. Can J Gastroenterol Hepatol 2018; 2018: 9049252
  • 99 Tsuchiya N, Yoshikawa T, Fujinami N. , et al. Immunological efficacy of glypican-3 peptide vaccine in patients with advanced hepatocellular carcinoma. OncoImmunology 2017; 6 (10) e1346764
  • 100 Sawada Y, Yoshikawa T, Ofuji K. , et al. Phase II study of the GPC3-derived peptide vaccine as an adjuvant therapy for hepatocellular carcinoma patients. OncoImmunology 2016; 5 (05) e1129483
  • 101 Ott PA, Hu Z, Keskin DB. , et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017; 547 (7662): 217-221
  • 102 Sahin U, Derhovanessian E, Miller M. , et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017; 547 (7662): 222-226
  • 103 Carreno BM, Magrini V, Becker-Hapak M. , et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015; 348 (6236): 803-808
  • 104 Shi F, Shi M, Zeng Z. , et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer 2011; 128 (04) 887-896
  • 105 Kim HD, Song GW, Park S. , et al. Association between expression level of PD1 by tumor-infiltrating CD8+ T cells and features of hepatocellular carcinoma. Gastroenterology 2018; 155 (06) 1936-1950.e17
  • 106 Boni C, Fisicaro P, Valdatta C. , et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol 2007; 81 (08) 4215-4225
  • 107 Fisicaro P, Valdatta C, Massari M. , et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology 2010; 138 (02) 682-693 , 693.e1–693.e4
  • 108 Yau T, Hsu C, Kim TY. , et al. Nivolumab in advanced hepatocellular carcinoma: Sorafenib-experienced Asian cohort analysis. J Hepatol 2019; 71 (03) 543-552
  • 109 Yau T, Kang Y-K, Kim T-Y. , et al. Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): results from CheckMate 040. J Clin Oncol 2019; 37: 4012-4012
  • 110 Finn RS, Ryoo B-Y, Merle P. , et al. Results of KEYNOTE-240: phase 3 study of pembrolizumab (Pembro) vs best supportive care (BSC) for second line therapy in advanced hepatocellular carcinoma (HCC). J Clin Oncol 2019; 37: 4004-4004
  • 111 Thommen DS, Koelzer VH, Herzig P. , et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med 2018; 24 (07) 994-1004
  • 112 Flecken T, Schmidt N, Hild S. , et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology 2014; 59 (04) 1415-1426
  • 113 Franceschini D, Paroli M, Francavilla V. , et al. PD-L1 negatively regulates CD4+CD25+Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J Clin Invest 2009; 119 (03) 551-564
  • 114 Kamada T, Togashi Y, Tay C. , et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A 2019; 116 (20) 9999-10008
  • 115 Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017; 27 (01) 109-118
  • 116 Wainberg ZA, Segal NH, Jaeger D. , et al. Safety and clinical activity of durvalumab monotherapy in patients with hepatocellular carcinoma (HCC). J Clin Oncol 2017; 35: 4071-4071
  • 117 Calderaro J, Rousseau B, Amaddeo G. , et al. Programmed death ligand 1 expression in hepatocellular carcinoma: relationship with clinical and pathological features. Hepatology 2016; 64 (06) 2038-2046
  • 118 Kelley RK, Abou-Alfa GK, Bendell JC. , et al. Phase I/II study of durvalumab and tremelimumab in patients with unresectable hepatocellular carcinoma (HCC): phase I safety and efficacy analyses. J Clin Oncol 2017; 35: 4073-4073
  • 119 Abou-Alfa GK, Chan SL, Furuse J. , et al. A randomized, multicenter phase 3 study of durvalumab (D) and tremelimumab (T) as first-line treatment in patients with unresectable hepatocellular carcinoma (HCC): HIMALAYA study. J Clin Oncol 2018; 36: TPS4144-TPS4144
  • 120 Abou-Alfa GK, Meyer T, Cheng AL. , et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med 2018; 379 (01) 54-63
  • 121 Kelley RK, Cheng A-L, Braiteh FS. , et al. Phase 3 (COSMIC-312) study of cabozantinib (C) in combination with atezolizumab (A) versus sorafenib (S) in patients (pts) with advanced hepatocellular carcinoma (aHCC) who have not received previous systemic anticancer therapy. J Clin Oncol 2019; 37: TPS4157-TPS4157
  • 122 Finn RS, Ducreux M, Qin S. , et al. IMbrave150: a randomized phase III study of 1L atezolizumab plus bevacizumab vs sorafenib in locally advanced or metastatic hepatocellular carcinoma. J Clin Oncol 2018; 36: TPS4141-TPS4141
  • 123 Li YL, Zhao H, Ren XB. Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward?. Cancer Biol Med 2016; 13 (02) 206-214
  • 124 Hansen W, Hutzler M, Abel S. , et al. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J Exp Med 2012; 209 (11) 2001-2016
  • 125 Hodi FS, O'Day SJ, McDermott DF. , et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363 (08) 711-723
  • 126 Wolchok JD, Chiarion-Sileni V, Gonzalez R. , et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017; 377 (14) 1345-1356
  • 127 Sangro B, Gomez-Martin C, de la Mata M. , et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 2013; 59 (01) 81-88
  • 128 Stanaway JD, Flaxman AD, Naghavi M. , et al. The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. Lancet 2016; 388 (10049): 1081-1088
  • 129 Blonski W, Kotlyar DS, Forde KA. Non-viral causes of hepatocellular carcinoma. World J Gastroenterol 2010; 16 (29) 3603-3615
  • 130 Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332 (6037): 1519-1523
  • 131 Karin M. New insights into the pathogenesis and treatment of non-viral hepatocellular carcinoma: a balancing act between immunosuppression and immunosurveillance. Precis Clin Med 2018; 1 (01) 21-28