Clin Colon Rectal Surg 2020; 33(02): 058-066
DOI: 10.1055/s-0040-1701230
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Clostridioides difficile Spores: Bile Acid Sensors and Trojan Horses of Transmission

Aimee Shen
1   Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
25. Februar 2020 (online)

Abstract

The Gram-positive, spore-forming bacterium, Clostridioides difficile is the leading cause of healthcare-associated infections in the United States, although it also causes a significant number of community-acquired infections. C. difficile infections, which range in severity from mild diarrhea to toxic megacolon, cost more to treat than matched infections, with an annual treatment cost of approximately $6 billion for almost half-a-million infections. These high–treatment costs are due to the high rates of C. difficile disease recurrence (>20%) and necessity for special disinfection measures. These complications arise in part because C. difficile makes metabolically dormant spores, which are the major infectious particle of this obligate anaerobe. These seemingly inanimate life forms are inert to antibiotics, resistant to commonly used disinfectants, readily disseminated, and capable of surviving in the environment for a long period of time. However, upon sensing specific bile salts in the vertebrate gut, C. difficile spores transform back into the vegetative cells that are responsible for causing disease. This review discusses how spores are ideal vectors for disease transmission and how antibiotics modulate this process. We also describe the resistance properties of spores and how they create challenges eradicating spores, as well as promote their spread. Lastly, environmental reservoirs of C. difficile spores and strategies for destroying them particularly in health care environments will be discussed.

 
  • References

  • 1 Lessa FC, Mu Y, Bamberg WM. , et al. Burden of Clostridioides difficile infection in the United States. N Engl J Med 2015; 372 (09) 825-834
  • 2 McDonald LC, Gerding DN, Johnson S. , et al. Clinical Practice Guidelines for Clostridioides difficile infection in adults and children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 2018; 66 (07) 987-994
  • 3 Khanna S, Pardi DS, Aronson SL. , et al. The epidemiology of community-acquired Clostridioides difficile infection: a population-based study. Am J Gastroenterol 2012; 107 (01) 89-95
  • 4 Bauer MP, Kuijper EJ. Potential sources of Clostridioides difficile in human infection. Infect Dis Clin North Am 2015; 29 (01) 29-35
  • 5 Eyre DW, Cule ML, Wilson DJ. , et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med 2013; 369 (13) 1195-1205
  • 6 Zhang S, Palazuelos-Munoz S, Balsells EM, Nair H, Chit A, Kyaw MH. Cost of hospital management of Clostridioides difficile infection in United States-a meta-analysis and modelling study. BMC Infect Dis 2016; 16 (01) 447
  • 7 Maroo S, Lamont JT. Recurrent Clostridioides difficile . Gastroenterology 2006; 130 (04) 1311-1316
  • 8 Lawley TD, Clare S, Deakin LJ. , et al. Use of purified Clostridioides difficile spores to facilitate evaluation of health care disinfection regimens. Appl Environ Microbiol 2010; 76 (20) 6895-6900
  • 9 Setlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 2006; 101 (03) 514-525
  • 10 Broukhanski G, Budylowski P. Laboratory plasticware - use at your own risk: suitability of microcentrifuge tubes for spores' analysis of Clostridioides difficile . Anaerobe 2019; 55: 61-66
  • 11 Janezic S, Mlakar S, Rupnik M. Dissemination of Clostridioides difficile spores between environment and households: dog paws and shoes. Zoonoses Public Health 2018; 65 (06) 669-674
  • 12 Deakin LJ, Clare S, Fagan RP. , et al. The Clostridioides difficile spo0A gene is a persistence and transmission factor. Infect Immun 2012; 80 (08) 2704-2711
  • 13 Dembek M, Willing SE, Hong HA, Hosseini S, Salgado PS, Cutting SM. Inducible expression of spo0A as a universal tool for studying sporulation in Clostridioides difficile . Front Microbiol 2017; 8: 1793
  • 14 Jump RL, Pultz MJ, Donskey CJ. Vegetative Clostridioides difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea?. Antimicrob Agents Chemother 2007; 51 (08) 2883-2887
  • 15 Kint N, Janoir C, Monot M. , et al. The alternative sigma factor σB plays a crucial role in adaptive strategies of Clostridioides difficile during gut infection. Environ Microbiol 2017; 19 (05) 1933-1958
  • 16 Abt MC, McKenney PT, Pamer EG. Clostridioides difficile colitis: pathogenesis and host defence. Nat Rev Microbiol 2016; 14 (10) 609-620
  • 17 Coullon H, Rifflet A, Wheeler R, Janoir C, Boneca IG, Candela T. N-Deacetylases required for muramic-δ-lactam production are involved in Clostridioides difficile sporulation, germination, and heat resistance. J Biol Chem 2018; 293 (47) 18040-18054
  • 18 Fimlaid KA, Jensen O, Donnelly ML, Francis MB, Sorg JA, Shen A. Identification of a novel lipoprotein regulator of Clostridioides difficile spore germination. PLoS Pathog 2015; 11 (10) e1005239
  • 19 Francis MB, Allen CA, Shrestha R, Sorg JA. Bile acid recognition by the Clostridioides difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 2013; 9 (05) e1003356
  • 20 Giel JL, Sorg JA, Sonenshein AL, Zhu J. Metabolism of bile salts in mice influences spore germination in Clostridioides difficile . PLoS One 2010; 5 (01) e8740
  • 21 Koenigsknecht MJ, Theriot CM, Bergin IL, Schumacher CA, Schloss PD, Young VB. Dynamics and establishment of Clostridioides difficile infection in the murine gastrointestinal tract. Infect Immun 2015; 83 (03) 934-941
  • 22 Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridioides difficile spores. J Bacteriol 2008; 190 (07) 2505-2512
  • 23 Dembek M, Stabler RA, Witney AA, Wren BW, Fairweather NF. Transcriptional analysis of temporal gene expression in germinating Clostridioides difficile 630 endospores. PLoS One 2013; 8 (05) e64011
  • 24 Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47 (02) 241-259
  • 25 Wilson KH, Kennedy MJ, Fekety FR. Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridioides difficile . J Clin Microbiol 1982; 15 (03) 443-446
  • 26 Ramirez N, Liggins M, Abel-Santos E. Kinetic evidence for the presence of putative germination receptors in Clostridioides difficile spores. J Bacteriol 2010; 192 (16) 4215-4222
  • 27 Sorg JA, Sonenshein AL. Chenodeoxycholate is an inhibitor of Clostridioides difficile spore germination. J Bacteriol 2009; 191 (03) 1115-1117
  • 28 Howerton A, Ramirez N, Abel-Santos E. Mapping interactions between germinants and Clostridioides difficile spores. J Bacteriol 2011; 193 (01) 274-282
  • 29 Wang S, Shen A, Setlow P, Li YQ. Characterization of the dynamic germination of individual Clostridioides difficile spores using Raman spectroscopy and differential interference contrast microscopy. J Bacteriol 2015; 197 (14) 2361-2373
  • 30 Stoltz KL, Erickson R, Staley C. , et al. Synthesis and biological evaluation of bile acid analogues inhibitory to Clostridioides difficile spore germination. J Med Chem 2017; 60 (08) 3451-3471
  • 31 Winston JA, Theriot CM. Impact of microbial derived secondary bile acids on colonization resistance against Clostridioides difficile in the gastrointestinal tract. Anaerobe 2016; 41: 44-50
  • 32 Setchell KD, Lawson AM, Tanida N, Sjövall J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J Lipid Res 1983; 24 (08) 1085-1100
  • 33 Lewis BB, Carter RA, Ling L. , et al. Pathogenicity locus, core genome, and accessory gene contributions to Clostridioides difficile virulence. MBio 2017; 8 (04) e00885-17
  • 34 Buffie CG, Bucci V, Stein RR. , et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridioides difficile . Nature 2015; 517 (7533): 205-208
  • 35 Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe 2017; 45: 86-100
  • 36 Theriot CM, Koenigsknecht MJ, Carlson Jr PE. , et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridioides difficile infection. Nat Commun 2014; 5: 3114
  • 37 Weingarden AR, Chen C, Bobr A. , et al. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridioides difficile infection. Am J Physiol Gastrointest Liver Physiol 2014; 306 (04) G310-G319
  • 38 Theriot CM, Bowman AA, Young VB. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridioides difficile spore germination and outgrowth in the large intestine. MSphere 2016; 1 (01) e00045-15
  • 39 Weingarden AR, Dosa PI, DeWinter E. , et al. Changes in colonic bile acid composition following fecal microbiota transplantation are sufficient to control Clostridioides difficile germination and growth. PLoS One 2016; 11 (01) e0147210
  • 40 Kochan TJ, Shoshiev MS, Hastie JL. , et al. Germinant synergy facilitates Clostridioides difficile spore germination under physiological conditions. MSphere 2018; 3 (05) e00335-18
  • 41 Carlson Jr PE, Kaiser AM, McColm SA. , et al. Variation in germination of Clostridioides difficile clinical isolates correlates to disease severity. Anaerobe 2015; 33: 64-70
  • 42 Carlson Jr PE, Walk ST, Bourgis AE. , et al. The relationship between phenotype, ribotype, and clinical disease in human Clostridioides difficile isolates. Anaerobe 2013; 24: 109-116
  • 43 Heeg D, Burns DA, Cartman ST, Minton NP. Spores of Clostridioides difficile clinical isolates display a diverse germination response to bile salts. PLoS One 2012; 7 (02) e32381
  • 44 Moore P, Kyne L, Martin A, Solomon K. Germination efficiency of clinical Clostridioides difficile spores and correlation with ribotype, disease severity and therapy failure. J Med Microbiol 2013; 62 (Pt 9): 1405-1413
  • 45 Oka K, Osaki T, Hanawa T. , et al. Molecular and microbiological characterization of Clostridioides difficile isolates from single, relapse, and reinfection cases. J Clin Microbiol 2012; 50 (03) 915-921
  • 46 Kochan TJ, Somers MJ, Kaiser AM. , et al. Intestinal calcium and bile salts facilitate germination of Clostridioides difficile spores. PLoS Pathog 2017; 13 (07) e1006443
  • 47 Shrestha R, Sorg JA. Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination. Anaerobe 2018; 49: 41-47
  • 48 Dial S, Delaney JA, Barkun AN, Suissa S. Use of gastric acid-suppressive agents and the risk of community-acquired Clostridioides difficile-associated disease. JAMA 2005; 294 (23) 2989-2995
  • 49 Sharma SK, Yip C, Esposito EX. , et al. The design, synthesis, and characterizations of spore germination inhibitors effective against an epidemic strain of Clostridioides difficile . J Med Chem 2018; 61 (15) 6759-6778
  • 50 Howerton A, Patra M, Abel-Santos E. A new strategy for the prevention of Clostridioides difficile infection. J Infect Dis 2013; 207 (10) 1498-1504
  • 51 Howerton A, Seymour CO, Murugapiran SK. , et al. Effect of the synthetic bile salt analog CamSA on the hamster model of Clostridioides difficile infection. Antimicrob Agents Chemother 2018; 62 (10) e02251-17
  • 52 Hensgens MP, Keessen EC, Squire MM. , et al; European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridioides difficile (ESGCD). Clostridioides difficile infection in the community: a zoonotic disease?. Clin Microbiol Infect 2012; 18 (07) 635-645
  • 53 Ternan NG, Moore ND, Smyth D. , et al. Increased sporulation underpins adaptation of Clostridioides difficile strain 630 to a biologically-relevant faecal environment, with implications for pathogenicity. Sci Rep 2018; 8 (01) 16691
  • 54 Endres BT, Dotson KM, Poblete K. , et al. Environmental transmission of Clostridioides difficile ribotype 027 at a long-term care facility; an outbreak investigation guided by whole genome sequencing. Infect Control Hosp Epidemiol 2018; 39 (11) 1322-1329
  • 55 Kong LY, Eyre DW, Corbeil J. , et al. Clostridioides difficile: investigating transmission patterns between infected and colonized patients using whole genome sequencing. Clin Infect Dis 2019; 68 (02) 204-209
  • 56 Kumar N, Miyajima F, He M. , et al. Genome-based infection tracking reveals dynamics of Clostridioides difficile transmission and disease recurrence. Clin Infect Dis 2016; 62 (06) 746-752
  • 57 Bobulsky GS, Al-Nassir WN, Riggs MM, Sethi AK, Donskey CJ. Clostridioides difficile skin contamination in patients with C. difficile-associated disease. Clin Infect Dis 2008; 46 (03) 447-450
  • 58 McFarland LV, Mulligan ME, Kwok RY, Stamm WE. Nosocomial acquisition of Clostridioides difficile infection. N Engl J Med 1989; 320 (04) 204-210
  • 59 Sethi AK, Al-Nassir WN, Nerandzic MM, Bobulsky GS, Donskey CJ. Persistence of skin contamination and environmental shedding of Clostridioides difficile during and after treatment of C. difficile infection. Infect Control Hosp Epidemiol 2010; 31 (01) 21-27
  • 60 Samore MH, Venkataraman L, DeGirolami PC, Arbeit RD, Karchmer AW. Clinical and molecular epidemiology of sporadic and clustered cases of nosocomial Clostridioides difficile diarrhea. Am J Med 1996; 100 (01) 32-40
  • 61 Jullian-Desayes I, Landelle C, Mallaret MR, Brun-Buisson C, Barbut F. Clostridioides difficile contamination of health care workers' hands and its potential contribution to the spread of infection: review of the literature. Am J Infect Control 2017; 45 (01) 51-58
  • 62 Loo VG. Environmental interventions to control Clostridioides difficile . Infect Dis Clin North Am 2015; 29 (01) 83-91
  • 63 Teltsch DY, Hanley J, Loo V, Goldberg P, Gursahaney A, Buckeridge DL. Infection acquisition following intensive care unit room privatization. Arch Intern Med 2011; 171 (01) 32-38
  • 64 Riggs MM, Sethi AK, Zabarsky TF, Eckstein EC, Jump RL, Donskey CJ. Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridioides difficile strains among long-term care facility residents. Clin Infect Dis 2007; 45 (08) 992-998
  • 65 Freedberg DE, Salmasian H, Cohen B, Abrams JA, Larson EL. Receipt of antibiotics in hospitalized patients and risk for Clostridioides difficile infection in subsequent patients who occupy the same bed. JAMA Intern Med 2016; 176 (12) 1801-1808
  • 66 Lawley TD, Clare S, Walker AW. , et al. Antibiotic treatment of clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun 2009; 77 (09) 3661-3669
  • 67 McDonald LC, Diekema DJ. Point-counterpoint: active surveillance for carriers of toxigenic Clostridioides difficile should be performed to guide prevention efforts. J Clin Microbiol 2018; 56 (08) e00782-18
  • 68 Curry SR, Muto CA, Schlackman JL. , et al. Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridioides difficile transmission. Clin Infect Dis 2013; 57 (08) 1094-1102
  • 69 Blixt T, Gradel KO, Homann C. , et al. Asymptomatic carriers contribute to nosocomial Clostridioides difficile infection: a cohort study of 4508 patients. Gastroenterology 2017; 152 (05) 1031-1041.e2
  • 70 Longtin Y, Paquet-Bolduc B, Gilca R. , et al. Effect of detecting and isolating Clostridioides difficile carriers at hospital admission on the incidence of C difficile infections: a quasi-experimental controlled study. JAMA Intern Med 2016; 176 (06) 796-804
  • 71 Crobach MJT, Vernon JJ, Loo VG. , et al. Understanding Clostridioides difficile colonization. Clin Microbiol Rev 2018; 31 (02) e00021-17
  • 72 Loo VG, Bourgault AM, Poirier L. , et al. Host and pathogen factors for Clostridioides difficile infection and colonization. N Engl J Med 2011; 365 (18) 1693-1703
  • 73 Enoch DA, Butler MJ, Pai S, Aliyu SH, Karas JA. Clostridioides difficile in children: colonisation and disease. J Infect 2011; 63 (02) 105-113
  • 74 Stoesser N, Eyre DW, Quan TP. , et al; Modernising Medical Microbiology Informatics Group (MMMIG). Epidemiology of Clostridioides difficile in infants in Oxfordshire, UK: Risk factors for colonization and carriage, and genetic overlap with regional C. difficile infection strains. PLoS One 2017; 12 (08) e0182307
  • 75 Stone NE, Sidak-Loftis LC, Sahl JW. , et al. More than 50% of Clostridioides difficile isolates from pet dogs in flagstaff, USA, carry toxigenic genotypes. PLoS One 2016; 11 (10) e0164504
  • 76 Weese JS, Finley R, Reid-Smith RR, Janecko N, Rousseau J. Evaluation of Clostridioides difficile in dogs and the household environment. Epidemiol Infect 2010; 138 (08) 1100-1104
  • 77 Orden C, Neila C, Blanco JL. , et al. Recreational sandboxes for children and dogs can be a source of epidemic ribotypes of Clostridioides difficile . Zoonoses Public Health 2018; 65 (01) 88-95
  • 78 Goorhuis A, Bakker D, Corver J. , et al. Emergence of Clostridioides difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 2008; 47 (09) 1162-1170
  • 79 Koene MG, Mevius D, Wagenaar JA. , et al. Clostridioides difficile in Dutch animals: their presence, characteristics and similarities with human isolates. Clin Microbiol Infect 2012; 18 (08) 778-784
  • 80 Knetsch CW, Kumar N, Forster SC. , et al. Zoonotic transfer of Clostridioides difficile harboring antimicrobial resistance between farm animals and humans. J Clin Microbiol 2018; 56 (03) e01384-17
  • 81 Knight DR, Squire MM, Collins DA, Riley TV. Genome analysis of Clostridioides difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. Front Microbiol 2017; 7: 2138
  • 82 Knight DR, Thean S, Putsathit P, Fenwick S, Riley TV. Cross-sectional study reveals high prevalence of Clostridioides difficile non-PCR ribotype 078 strains in Australian veal calves at slaughter. Appl Environ Microbiol 2013; 79 (08) 2630-2635
  • 83 Moono P, Lim SC, Riley TV. High prevalence of toxigenic Clostridioides difficile in public space lawns in Western Australia. Sci Rep 2017; 7: 41196
  • 84 Lim SC, Foster NF, Elliott B, Riley TV. High prevalence of Clostridioides difficile on retail root vegetables, Western Australia. J Appl Microbiol 2018; 124 (02) 585-590
  • 85 Candel-Pérez C, Ros-Berruezo G, Martínez-Graciá C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiol 2019; 77: 118-129
  • 86 Setlow P. I will survive: DNA protection in bacterial spores. Trends Microbiol 2007; 15 (04) 172-180
  • 87 McKenney PT, Driks A, Eichenberger P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 2013; 11 (01) 33-44
  • 88 Driks A, Eichenberger P. The spore coat. Microbiol Spectr 2016 4. (02): Doi: 10.1128/microbiolspec.TBS-0023-2016
  • 89 Diaz OR, Sayer CV, Popham DL, Shen A. Clostridioides difficile lipoprotein GerS is required for cortex modification and thus spore germination. MSphere 2018; 3 (03) e00205-18
  • 90 Donnelly ML, Fimlaid KA, Shen A. Characterization of Clostridioides difficile spores lacking either SpoVAC or dipicolinic acid synthetase. J Bacteriol 2016; 198 (11) 1694-1707
  • 91 Edwards AN, Karim ST, Pascual RA, Jowhar LM, Anderson SE, McBride SM. Chemical and stress resistances of Clostridioides difficile spores and vegetative cells. Front Microbiol 2016; 7: 1698
  • 92 Pegues DA, Han J, Gilmar C, McDonnell B, Gaynes S. Impact of ultraviolet germicidal irradiation for no-touch terminal room disinfection on Clostridioides difficile infection incidence among hematology-oncology patients. Infect Control Hosp Epidemiol 2017; 38 (01) 39-44
  • 93 Schlievert PM, Kilgore SH, Kaus GM, Ho TD, Ellermeier CD. Glycerol monolaurate (GML) and a nonaqueous five-percent GML gel kill Bacillus and Clostridium spores. MSphere 2018; 3 (06) e00597-18
  • 94 Kundrapu S, Sunkesula V, Jury LA, Sitzlar BM, Donskey CJ. Daily disinfection of high-touch surfaces in isolation rooms to reduce contamination of healthcare workers' hands. Infect Control Hosp Epidemiol 2012; 33 (10) 1039-1042
  • 95 Anderson DJ, Moehring RW, Weber DJ. , et al; CDC Prevention Epicenters Program. Effectiveness of targeted enhanced terminal room disinfection on hospital-wide acquisition and infection with multidrug-resistant organisms and Clostridioides difficile: a secondary analysis of a multicentre cluster randomised controlled trial with crossover design (BETR Disinfection). Lancet Infect Dis 2018; 18 (08) 845-853
  • 96 Nerandzic MM, Donskey CJ. Triggering germination represents a novel strategy to enhance killing of Clostridioides difficile spores. PLoS One 2010; 5 (08) e12285
  • 97 Nerandzic MM, Donskey CJ. Sensitizing Clostridioides difficile spores with germinants on skin and environmental surfaces represents a new strategy for reducing spores via ambient mechanisms. Pathog Immun 2017; 2 (03) 404-421
  • 98 Nerandzic MM, Donskey CJ. Activate to eradicate: inhibition of Clostridioides difficile spore outgrowth by the synergistic effects of osmotic activation and nisin. PLoS One 2013; 8 (01) e54740