Synthesis 2021; 53(10): 1734-1748
DOI: 10.1055/s-0040-1705995
short review

Recent Advances in the Development of Catalytic Methods that Construct Medium-Ring Lactams, Partially Saturated Benzazepines and Their Derivatives

Wrickban Mazumdar
,
Tom G. Driver
The authors are grateful to the National Science Foundation (CHE-1564959) and the National Institutes of Health (R01GM138388) for supporting their research program.


Abstract

Recent catalytic methods to construct medium-sized lactams­ and partially saturated benzazepines and their derivatives are surveyed. The review is divided into the following sections:

1 Introduction

2 Non-Transition-Metal-Catalyzed Reactions

2.1 Beckmann Rearrangement

2.2 Non-Beckmann Rearrangement Reactions

2.3 Multicomponent reactions

3 Transition-Metal-Catalyzed Reactions

3.1 Gold-Catalyzed Reactions to Access Medium-Sized N-Hetero­cycles

3.2 Reactions Involving a Metal η3-Complex Catalytic Intermediate

3.3 Transition-Metal-Catalyzed Reactions of Strained Cycloalkanes

4 Conclusions



Publication History

Received: 30 September 2020

Accepted after revision: 30 October 2020

Article published online:
11 January 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ryan JH, Green JL, Hyland C, Smith JA, Williams CC. In Progress in Heterocyclic Chemistry, Vol. 23. Gribble GW, Joule JA. Elsevier; Amsterdam: 2011: 465
    • 1b Meyer AG, Bissember AC, Hyland CJ. T, Williams CC, Szabo M, Abel S.-AG, Bird MJ, Hyland IK, Pham H. In Progress in Heterocyclic Chemistry, Vol. 30. Gribble GW, Joule JA. Elsevier; Amsterdam: 2018: 493
    • 1c Ji Ram V, Sethi A, Nath M, Pratap R. In The Chemistry of Heterocycles . Elsevier; Amsterdam: 2019: 393
  • 2 Kondo K, Ogawa H, Yamashita H, Miyamoto H, Tanaka M, Nakaya K, Kitano K, Yamamura Y, Nakamura S, Onogawa T, Mori T, Tominaga M. Bioorg. Med. Chem. 1999; 7: 1743
  • 3 Hou FF, Zhang X, Zhang GH, Xie D, Chen PY, Zhang WR, Jiang JP, Liang M, Wang GB, Liu ZR, Geng RW. N. Engl. J. Med. 2006; 354: 131
  • 4 Lean IJ, Thompson JM, Dunshea FR. PLOS ONE 2014; 9: e115904
    • 5a Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 5b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 6a Illuminati G, Mandolini L. Acc. Chem. Res. 1981; 14: 95
    • 6b Wiberg KB. Angew. Chem., Int. Ed. Engl. 1986; 25: 312
    • 6c Weinhold F. Nature 2001; 411: 539
  • 7 Beckmann E. Ber. Dtsch. Chem. Ges. 1886; 19: 988
    • 8a Donaruma LG, Heldt WZ. Org. React. 1960; 11: 1
    • 8b Gawley RE. Org. React. 1988; 35: 14
  • 9 Yamabe S, Tsuchida N, Yamazaki S. J. Org. Chem. 2005; 70: 10638
    • 10a Luedeke VD. In Encyclopedia of Chemical Processing and Design . Mcketta JJ. Marcel Dekker; New York: 1978
    • 10b Rademacher H. In Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed., Vol. A8. Gerhartz W. Wiley; New York: 1987: 201
    • 10c Weber JN. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 19. Kroschwitz JI. Wiley; New York: 1990: 500
    • 10d Wessermel K, Arpe H.-J. In Industrial Organic Chemistry, 4th ed. Wiley-VCH; Weinheim: 2003: 239
  • 11 Fisher WB, Crescentini L. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 4. Kroschwitz JI. Wiley; New York: 1990: 827
  • 12 Furuya Y, Ishihara K, Yamamoto H. J. Am. Chem. Soc. 2005; 127: 11240
    • 13a Lampert BB, Bordwell FG. J. Am. Chem. Soc. 1951; 73: 2369
    • 13b Fischer HP. Tetrahedron Lett. 1968; 285
  • 14 Hashimoto M, Obora Y, Sakaguchi S, Ishii Y. J. Org. Chem. 2008; 73: 2894
  • 15 Hashimoto M, Sakaguchi S, Ishii Y. Chem. Asian J. 2006; 1: 712
  • 16 Vanos CM, Lambert TH. Chem. Sci. 2010; 1: 705
  • 17 Kelly BD, Lambert TH. J. Am. Chem. Soc. 2009; 131: 13930
  • 18 Kiely-Collins HJ, Sechi I, Brennan PE, McLaughlin MG. Chem. Commun. 2018; 54: 654
  • 19 Harder S. Chem. Rev. 2010; 110: 3852
  • 20 Mo X, Morgan TD. R, Ang HT, Hall DG. J. Am. Chem. Soc. 2018; 140: 5264
    • 21a Zheng H, Lejkowski M, Hall DG. Chem. Sci. 2011; 2: 1305
    • 21b Zheng H, Ghanbari S, Nakamura S, Hall DG. Angew. Chem. Int. Ed. 2012; 51: 6187
    • 21c Mo X, Hall DG. J. Am. Chem. Soc. 2016; 138: 10762
    • 21d Mo X, Yakiwchuk J, Dansereau J, McCubbin JA, Hall DG. J. Am. Chem. Soc. 2015; 137: 9694
  • 22 Hyodo K, Hasegawa G, Oishi N, Kuroda K, Uchida K. J. Org. Chem. 2018; 83: 13080
  • 23 Tamura Y, Fujiwara H, Sumoto K, Ikeda M, Kita Y. Synthesis 1973; 215
  • 24 Johnson CR, Kirchhoff RA, Corkins HG. J. Org. Chem. 1974; 39: 2458
  • 25 Hyodo K, Togashi K, Oishi N, Hasegawa G, Uchida K. Org. Lett. 2017; 19: 3005
  • 26 Wu X, Zhou L, Maiti R, Mou C, Pan L, Chi YR. Angew. Chem. Int. Ed. 2019; 58: 477
  • 27 Rauhut MM, Currier H. (American Cyanamid Co.) US Patent 307499919630122, 1963 ; Chem. Abstr. 1963, 58, 224.
  • 28 Saifuddin M, Agarwal PK, Sharma SK, Mandadapu AK, Gupta S, Harit VK, Kundu B. Eur. J. Org. Chem. 2010; 5108
  • 29 Wang S, Guillot R, Carpentier J.-F, Sarazin Y, Bour C, Gandon V, Lebœuf D. Angew. Chem. Int. Ed. 2020; 59: 1134
  • 30 Chen P, Chen Z.-C, Li Y, Ouyang Q, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2019; 58: 4036
  • 31 Borisov RS, Polyakov AI, Medvedeva LA, Khrustalev VN, Guranova NI, Voskressensky LG. Org. Lett. 2010; 12: 3894
    • 32a Xu Z, Dietrich J, Shaw AY, Hulme C. Tetrahedron Lett. 2010; 51: 4566
    • 32b Dietrich J, Kaiser C, Meurice N, Hulme C. Tetrahedron Lett. 2010; 51: 3951
    • 33a Zohreh N, Alizadeh A, Bijanzadeh HR, Zhu L.-G. J. Comb. Chem. 2010; 12: 497
    • 33b Shaabani A, Maleki A, Hajishaabanha F, Mofakham H, Seyyedhamzeh M, Mahyari M, Ng SW. J. Comb. Chem. 2010; 12: 186
  • 34 Zhou H, Zhang W, Yan B. J. Comb. Chem. 2010; 12: 206
  • 35 Kang G, Yamagami M, Vellalath S, Romo D. Angew. Chem. Int. Ed. 2018; 57: 6527
  • 36 Vellalath S, Van KN, Romo D. Angew. Chem. Int. Ed. 2013; 52: 13688
  • 37 Xu T, Yang Q, Li D, Dong J, Yu Z, Li Y. Chem. Eur. J. 2010; 16: 9264
    • 38a Mont N, Mehta VP, Appukkuttan P, Beryozkina T, Toppet S, Van Hecke K, Van Meervelt L, Voet A, DeMaeyer M, Van der Eycken E. J. Org. Chem. 2008; 73: 7509
    • 38b Peshkov VA, Pereshivko OP, Donets PA, Mehta VP, Van der Eycken EV. Eur. J. Org. Chem. 2010; 4861
  • 39 Cui L, Zhang G, Peng Y, Zhang L. Org. Lett. 2009; 11: 1225
  • 40 Cui L, Ye L, Zhang L. Chem. Commun. 2010; 46: 3351
  • 41 Zhou G, Zhang J. Chem. Commun. 2010; 46: 6593
    • 42a Murarka S, Deb I, Zhang C, Seidel D. J. Am. Chem. Soc. 2009; 131: 13226
    • 42b Murarka S, Zhang C, Konieczynska MD, Seidel D. Org. Lett. 2009; 11: 129
  • 43 Guo C, Fleige M, Janssen-Müller D, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2016; 138: 7840
    • 44a Chen Z.-C, Chen Z, Yang Z.-H, Guo L, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2019; 58: 15021
    • 44b Liu Y.-Z, Wang Z, Huang Z, Zheng X, Yang W.-L, Deng W.-P. Angew. Chem. Int. Ed. 2020; 59: 1238
  • 45 Wang G.-W, Bower JF. J. Am. Chem. Soc. 2018; 140: 2743
  • 46 Shaw MH, Melikhova EY, Kloer DP, Whittingham WG, Bower JF. J. Am. Chem. Soc. 2013; 135: 4992
  • 47 McCreanor NG, Stanton S, Bower JF. J. Am. Chem. Soc. 2016; 138: 11465
  • 48 Wang G.-W, McCreanor NG, Shaw MH, Whittingham WG, Bower JF. J. Am. Chem. Soc. 2016; 138: 13501
    • 49a Shaw MH, McCreanor NG, Whittingham WG, Bower JF. J. Am. Chem. Soc. 2015; 137: 463
    • 49b Shaw MH, Bower JF. Chem. Commun. 2016; 52: 10817
  • 50 Mazumdar W, Jana N, Thurman BT, Wink DJ, Driver TG. J. Am. Chem. Soc. 2017; 139: 5031
  • 51 Deng T, Mazumdar W, Ford RL, Jana N, Izar R, Wink DJ, Driver TG. J. Am. Chem. Soc. 2020; 142: 4456