CC BY 4.0 · Synthesis 2021; 53(07): 1213-1228
DOI: 10.1055/s-0040-1705999
short review

Modification of Azobenzenes by Cross-Coupling Reactions

a   University of Bremen, Institute for Analytical and Organic Chemistry, Leobener Straße 7, 28359 Bremen, Germany
b   MAPEX Center for Materials and Processes, Bibliothekstraße 1, 28359 Bremen, Germany
,
a   University of Bremen, Institute for Analytical and Organic Chemistry, Leobener Straße 7, 28359 Bremen, Germany
b   MAPEX Center for Materials and Processes, Bibliothekstraße 1, 28359 Bremen, Germany
,
a   University of Bremen, Institute for Analytical and Organic Chemistry, Leobener Straße 7, 28359 Bremen, Germany
b   MAPEX Center for Materials and Processes, Bibliothekstraße 1, 28359 Bremen, Germany
,
a   University of Bremen, Institute for Analytical and Organic Chemistry, Leobener Straße 7, 28359 Bremen, Germany
b   MAPEX Center for Materials and Processes, Bibliothekstraße 1, 28359 Bremen, Germany
,
Anne Staubitz
a   University of Bremen, Institute for Analytical and Organic Chemistry, Leobener Straße 7, 28359 Bremen, Germany
b   MAPEX Center for Materials and Processes, Bibliothekstraße 1, 28359 Bremen, Germany
› Institutsangaben
A.S. and S.S. thank the German Research Foundation (DFG) for the financial support within the priority program SPP 2100 ‘Soft Material Robotic Systems’, Subproject STA1195/5-1, ‘Insect feet inspired concepts soft touch grippers with dynamically adjustable grip strength’.


Abstract

Azobenzenes are among the most extensively used molecular switches for many different applications. The need to tailor them to the required task often requires further functionalization. Cross-coupling reactions are ideally suited for late-stage modifications. This review provides an overview of recent developments in the modification of azobenzene and its derivatives by cross-coupling reactions.

1 Introduction

2 Azobenzenes as Formally Electrophilic Components

2.1 Palladium Catalysis

2.2 Nickel Catalysis

2.3 Copper Catalysis

2.4 Cobalt Catalysis

3 Azobenzenes as Formally Nucleophilic Components

3.1 Palladium Catalysis

3.2 Copper Catalysis

3.3 C–H Activation Reactions

4 Azobenzenes as Ligands in Catalysts

5 Diazocines

5.1 Synthesis

5.2 Cross-Coupling Reactions

6 Conclusion



Publikationsverlauf

Eingereicht: 07. Oktober 2020

Angenommen nach Revision: 19. November 2020

Artikel online veröffentlicht:
28. Januar 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Merino E, Ribagorda M. Beilstein J. Org. Chem. 2012; 8: 1071
  • 2 Hartley GS. Nature 1937; 140: 281
    • 3a Brown CJ. Acta Crystallogr. 1966; 21: 146
    • 3b Mostad A, Rømming C. Acta Chem. Scand. 1971; 25: 3561
  • 4 Hartley GS, Le Fèvre RJ. W. J. Chem. Soc. 1939; 531
  • 5 Åstrand P.-O, Ramanujam PS, Hvilsted S, Bak KL, Sauer SP. A. J. Am. Chem. Soc. 2000; 122: 3482
    • 6a Cheben P, del Monte F, Worsfold DJ, Carlsson DJ, Grover CP, Mackenzie JD. Nature 2000; 408: 64
    • 6b Ikeda T, Sasaki T, Ichimura K. Nature 1993; 361: 428
    • 9a Pausacker KH. J. Chem. Soc. 1953; 1989
    • 9b Lu W, Xi C. Tetrahedron Lett. 2008; 49: 4011
    • 9c Ma H, Li W, Wang J, Xiao G, Gong Y, Qi C, Feng Y, Li X, Bao Z, Cao W, Sun Q, Veaceslav C, Wang F, Lei Z. Tetrahedron 2012; 68: 8358
    • 9d Zhang C, Jiao N. Angew. Chem. Int. Ed. 2010; 49: 6174
    • 10a Ibne-Rasa KM, Lauro CG, Edwards JO. J. Am. Chem. Soc. 1963; 85: 1165
    • 10b Davey MH, Lee VY, Miller RD, Marks TJ. J. Org. Chem. 1999; 64: 4976
    • 11a Cohen T, Lewarchik RJ, Tarino JZ. J. Am. Chem. Soc. 1974; 96: 7753
    • 11b Shine HJ, Zmuda H, Kwart H, Horgan AG, Brechbiel M. J. Am. Chem. Soc. 1982; 104: 5181
  • 12 Matsui M, Iwata Y, Kato T, Shibata K. Dyes Pigm. 1988; 9: 109
    • 13a Katritzky AR, Wu J, Verin SV. Synthesis 1995; 651
    • 13b Farhadi S, Sepahvand S. J. Mol. Catal. A: Chem. 2010; 318: 75
    • 13c Alberti A, Bedogni N, Benaglia M, Leardini R, Nanni D, Pedulli GF, Tundo A, Zanardi G. J. Org. Chem. 1992; 57: 607
    • 14a Burns J, McCombie H, Scarborough HA. J. Chem. Soc. 1928; 2928
    • 14b Robertson PW, Hitchings TR, Will GM. J. Chem. Soc. 1950; 808
    • 14c Fahey DR. J. Organomet. Chem. 1971; 27: 283
    • 14d Fahey DR. J. Chem. Soc. D 1970; 417
    • 14e Konrad DB, Frank JA, Trauner D. Chem. Eur. J. 2016; 22: 4364
    • 14f Li J, Cong W, Gao Z, Zhang J, Yang H, Jiang G. Org. Biomol. Chem. 2018; 16: 3479
    • 15a Han MR, Hashizume D, Hara M. Acta Crystallogr., Sect. E 2006; 62: o3001
    • 15b Bléger D, Ciesielski A, Samorì P, Hecht S. Chem. Eur. J. 2010; 16: 14256
    • 15c De Jesús M, Larios-López L, Rodríguez-González RJ, Navarro-Rodríguez D. J. Mol. Liq. 2016; 222: 1031
    • 15d Torres-Rocha OL, Larios-López L, Rodríguez-González RJ, Felix-Serrano I, Navarro-Rodríguez D. J. Mol. Liq. 2017; 225: 251
    • 15e Huang W, Lee S.-K, Sung YM, Peng F, Yin B, Ma M, Chen B, Liu S, Kirk SR, Kim D, Song J. Chem. Eur. J. 2015; 21: 15328
    • 15f Heitmann G, Dommaschk M, Löw R, Herges R. Org. Lett. 2016; 18: 5228
    • 15g Yin B, Kim T, Zhou M, Huang W, Kim D, Song J. Org. Lett. 2017; 19: 2654
    • 15h Nguyen T.-T.-T, Turp D, Wang D, Nolscher B, Laquai F, Mullen K. J. Am. Chem. Soc. 2011; 133: 11194
    • 15i Izumi A, Teraguchi M, Nomura R, Masuda T. Macromolecules 2000; 33: 5347
    • 15j Li L, He F, Wang X, Ma N, Li L. ACS Appl. Mater. Interfaces 2012; 4: 4927
    • 15k Cheng HL, Tang MT, Tuchinda W, Enomoto K, Chiba A, Saito Y, Kamiya T, Sugimoto M, Saeki A, Sakurai T, Omichi M, Sakamaki D, Seki S. Adv. Mater. Interfaces 2015; 2: 1400450
    • 15l Zhao R, Zhan X, Yao L, Chen Q, Xie Z, Ma Y. Macromol. Rapid Commun. 2016; 37: 610
    • 15m Huang C.-W, Ji W.-Y, Kuo S.-W. Polym. Chem. 2018; 9: 2813
    • 15n Wang K, Yin L, Miu T, Liu M, Zhao Y, Chen Y, Zhou N, Zhang W, Zhu X. Mater. Chem. Front. 2018; 2: 1112
    • 15o Otaki M, Kumai R, Goto H. J. Polym. Sci., Part A: Polym. Chem. 2019; 57: 1756
    • 15p Wang Z, Müller K, Valášek M, Grosjean S, Bräse S, Wöll C, Mayor M, Heinke L. J. Phys. Chem. C 2018; 122: 19044
    • 15q Ma X, Qu D, Ji F, Wang Q, Zhu L, Xu Y, Tian H. Chem. Commun. 2007; 1409
    • 15r Ma X, Wang Q, Tian H. Tetrahedron Lett. 2007; 48: 7112
    • 15s Reuter R, Wegner HA. Beilstein J. Org. Chem. 2012; 8: 877
  • 16 Chen Y, Li C, Xu X, Liu M, He Y, Murtaza I, Zhang D, Yao C, Wang Y, Meng H. ACS Appl. Mater. Interfaces 2017; 9: 7305
  • 17 Han M, Norikane Y, Onda K, Matsuzawa Y, Yoshida M, Hara M. New J. Chem. 2010; 34: 2892
  • 18 Qu DH, Wang QC, Ma X, Tian H. Chem. Eur. J. 2005; 11: 5929
  • 19 Köhl I, Lüning U. Synthesis 2014; 46: 2376
    • 20a Bryant-Friedrich AC, Neidlein R. Helv. Chim. Acta 1997; 80: 1639
    • 20b Yu B.-C, Shirai Y, Tour JM. Tetrahedron 2006; 62: 10303
    • 20c Zarwell S, Rück-Braun K. Tetrahedron Lett. 2008; 49: 4020
    • 20d Zeitouny J, Aurisicchio C, Bonifazi D, De Zorzi R, Geremia S, Bonini M, Palma CA, Samorì P, Listorti A, Belbakra A, Armaroli N. J. Mater. Chem. 2009; 19: 4715
    • 20e Itoi H, Kambe T, Kano N, Kawashima T. Inorg. Chim. Acta 2012; 381: 117
    • 20f Jaumann EA, Steinwand S, Klenik S, Plackmeyer J, Bats JW, Wachtveitl J, Prisner TF. Phys. Chem. Chem. Phys. 2017; 19: 17263
    • 20g Koumura N, Kudo M, Tamaoki N. Langmuir 2004; 20: 9897
    • 20h Moreno C, Arnanz A, Medina R.-M, Macazaga M.-J, Pascual M, García-Frutos EM, Martínez-Gimeno E, Marcos M.-L. Organometallics 2015; 34: 2971
    • 20i Zhao Y, Li K, Zhang Y, Zhao Y, Miao Z. Mol. Cryst. Liq. Cryst. 2017; 650: 7
    • 20j Huo X, Xu QP, Miao Z. Appl. Mech. Mater. 2014; 584-586: 1705
    • 20k Okano K, Tsutsumi O, Shishido A, Ikeda T. J. Am. Chem. Soc. 2006; 128: 15368
    • 20l Kuciauskas D, Porsch MJ, Pakalnis S, Lott KM, Wright ME. J. Phys. Chem. B 2003; 107: 1559
    • 20m Humphrey JL, Lott KM, Wright ME, Kuciauskas D. J. Phys. Chem. B 2005; 109: 21496
    • 20n Shen D, Pan Z, Xu H, Cheng S, Zhu X, Fan L. Chin. J. Chem. 2010; 28: 1279
    • 20o Ansari M, Bera R, Mondal S, Das N. ACS Omega 2019; 4: 9383
    • 20p Iba S, Ishida T, Sanda F. Polym. Bull. 2020; 77: 1121
    • 20q Nath I, Chakraborty J, Khan A, Arshad MN, Azum N, Rab MA, Asiri AM, Alamry KA, Verpoort F. J. Catal. 2019; 377: 183
    • 20r Mohamed Ahmed MS, Mori A. Tetrahedron 2004; 60: 9977
    • 20s Liao L.-X, Stellacci F, McGrath DV. J. Am. Chem. Soc. 2004; 126: 2181
    • 20t Casas-Solvas JM, Vargas-Berenguel A. Tetrahedron Lett. 2008; 49: 6778
  • 21 Shirtcliff LD, Weakley TJ. R, Haley MM, Köhler F, Herges R. J. Org. Chem. 2004; 69: 6979
  • 22 Heindl AH, Wegner HA. Beilstein J. Org. Chem. 2020; 16: 22
  • 23 Liu Y, Yang W, Liu H. Chem. Eur. J. 2015; 21: 4731
  • 24 Jiang C, Yang W, Liu H. Russ. Chem. Bull. 2016; 65: 1076
  • 25 Izumi A, Teraguchi M, Nomura R, Masuda T. J. Polym. Sci., Part A: Polym. Chem. 2000; 38: 1057
  • 26 Quandt G, Höfner G, Pabel J, Dine J, Eder M, Wanner KT. J. Med. Chem. 2014; 57: 6809
  • 27 Izumi A, Nomura R, Masuda T. Macromolecules 2001; 34: 4342
  • 28 Gøgsig TM, Kleimark J, Nilsson Lill SO, Korsager S, Lindhardt AT, Norrby PO, Skrydstrup T. J. Am. Chem. Soc. 2012; 134: 443
  • 29 Xu X.-D, Zhang J, Chen L.-J, Zhao X.-L, Wang D.-X, Yang H.-B. Chem. Eur. J. 2012; 18: 1659
  • 30 Al-Balushi RA, Haque A, Jayapal M, Al-Suti MK, Husband J, Khan MS, Skelton JM, Molloy KC, Raithby PR. Inorg. Chem. 2016; 55: 10955
  • 31 Zhao R, Han J, Huang M, Liu F, Wang L, Ma Y. Macromol. Rapid Commun. 2017; 38: 1700274
  • 32 Ghosh T, Maity P, Kundu D, Ranu BC. New J. Chem. 2016; 40: 9556
  • 33 Strueben J, Gates PJ, Staubitz A. J. Org. Chem. 2014; 79: 1719
  • 34 Strueben J, Lipfert M, Springer J.-O, Gould CA, Gates PJ, Sönnichsen FD, Staubitz A. Chem. Eur. J. 2015; 21: 11165
  • 35 Garlichs-Zschoche FA, Dötz KH. Organometallics 2007; 26: 4535
  • 36 Harvey JH, Butler BK, Trauner D. Tetrahedron Lett. 2007; 48: 1661
  • 37 Zhao F, Grubert L, Hecht S, Bléger D. Chem. Commun. 2017; 53: 3323
    • 38a Hansen MJ, Lerch MM, Szymanski W, Feringa BL. Angew. Chem. Int. Ed. 2016; 55: 13514
    • 38b Hierrezuelo J, Rico R, Valpuesta M, Díaz A, López-Romero JM, Rutkis M, Kreigberga J, Kampars V, Algarra M. Tetrahedron 2013; 69: 3465
  • 39 Miao Z, Li Y, Zhang X. Appl. Mech. Mater. 2014; 584-586: 1673
    • 41a Sogawa H, Shiotsuki M, Matsuoka H, Sanda F. Macromolecules 2011; 44: 3338
    • 41b Sogawa H, Shiotsuki M, Sanda F. Macromolecules 2013; 46: 4378
    • 41c Okano K, Shishido A, Ikeda T. Adv. Mater. 2006; 18: 523
  • 42 Gerstel P, Klumpp S, Hennrich F, Poschlad A, Meded V, Blasco E, Wenzel W, Kappes MM, Barner-Kowollik C. ACS Macro Lett. 2014; 3: 10
  • 43 Zhang Y, Chen S. RSC Adv. 2018; 8: 37348
  • 44 Kanbara T, Oshima M, Imayasu T, Hasegawa K. Macromolecules 1998; 31: 8725
  • 45 Honma A, Kanbara T, Hasegawa K. Mol. Cryst. Liq. Cryst. 2000; 345: 125
  • 46 Chun C, Kim M.-J, Vak D, Kim DY. J. Mater. Chem. 2003; 13: 2904
  • 47 Chun C, Ghim J, Kim M.-J, Kim DY. J. Polym. Sci., Part A: Polym. Chem. 2005; 43: 3525
  • 48 Chen X, Chang G. Chin. J. Chem. 2009; 27: 2093
  • 49 Sakano T, Horie M, Osakada K, Nakao H. Eur. J. Inorg. Chem. 2005; 644
  • 50 Bahrenburg J, Sievers CM, Schönborn JB, Hartke B, Renth F, Temps F, Näther C, Sönnichsen FD. Photochem. Photobiol. Sci. 2013; 12: 511
  • 51 Zhang Y, Zhang Q, Pei S, Wang Y, Zhang H, Jiang Z. High Perform. Polym. 2014; 26: 946
    • 52a Li H, Li P, Wang L. Org. Lett. 2013; 15: 620
    • 52b Khatun N, Modi A, Ali W, Patel BK. J. Org. Chem. 2015; 80: 9662
    • 52c Li M, Ye Y. ChemCatChem 2015; 7: 4137
    • 52d Hong G, Aruma AN, Zhu X, Wu S, Wang L. Synthesis 2016; 48: 1147
    • 52e Yong WS, Park S, Yun H, Lee PH. Adv. Synth. Catal. 2016; 358: 1958
    • 52f Fu X, Wei Z, Xia C, Shen C, Xu J, Yang Y, Wang K, Zhang P. Catal. Lett. 2017; 147: 400
    • 52g Gu N, Sun S, Cheng J. Tetrahedron Lett. 2018; 59: 1069
    • 53a Wang H, Yu Y, Hong X, Tan Q, Xu B. J. Org. Chem. 2014; 79: 3279
    • 53b Fu T, Yang J, Sun H, Zhang C, Xiang H, Zhou X. Asian J. Org. Chem. 2018; 7: 1844
  • 54 Li J, Zhou H, Zhang J, Yang H, Jiang G. Chem. Commun. 2016; 52: 9589
    • 55a Cai S, Lin S, Yi X, Xi C. J. Org. Chem. 2017; 82: 512
    • 55b Oh Y, Han SH, Mishra NK, De U, Lee J, Kim HS, Jung YH, Kim IS. Eur. J. Org. Chem. 2017; 6265
    • 55c Zhu J, Sun S, Cheng J. Tetrahedron Lett. 2018; 59: 2284
  • 56 Deng H, Li H, Wang L. Org. Lett. 2016; 18: 3110
  • 57 Bruce MI, Iqbal MZ, Stone FG. A. Chem. Commun. 1970; 1325
  • 58 Li G, Ma X, Jia C, Han Q, Wang Y, Wang J, Yu L, Yang S. Chem. Commun. 2017; 53: 1261
    • 59a Borah G, Borah P, Patel P. Org. Biomol. Chem. 2017; 15: 3854
    • 59b Hande AE, Muniraj N, Prabhu KR. ChemistrySelect 2017; 2: 5965
    • 59c Muniraj N, Prabhu KR. J. Org. Chem. 2017; 82: 6913
  • 60 Borah G, Patel P. Org. Biomol. Chem. 2019; 17: 2554
  • 61 Li G, Chen X, Lv X, Jia C, Gao P, Wang Y, Yang S. Sci. China: Chem. 2018; 61: 660
  • 62 Kato T, Kuriyama S, Nakajima K, Nishibayashi Y. Chem. Asian J. 2019; 14: 2097
    • 63a Lee K.-E, Jeon H.-T, Han S.-Y, Ham J, Kim Y.-J, Lee SW. Dalton Trans. 2009; 6578
    • 63b Islam SM, Mondal P, Roy AS, Mondal S, Hossain D. Tetrahedron Lett. 2010; 51: 2067
    • 63c Bulygina LA, Khrushcheva NS, Peregudova SM, Sokolov VI. Russ. Chem. Bull. 2012; 61: 1998
    • 63d Priyadarshani N, Suriboot J, Bergbreiter DE. Green Chem. 2013; 15: 1361
    • 63e Roy S, Pramanik S, Ghorui T, Pramanik K. RSC Adv. 2015; 5: 22544
    • 63f Pratihar JL, Mandal P, Lin C.-H, Lai CK, Mal D. Polyhedron 2017; 135: 224
  • 64 Alder MJ, Cross WI, Flower KR, Pritchard RG. J. Organomet. Chem. 1999; 590: 123
  • 65 Siewertsen R, Neumann H, Buchheim-Stehn B, Herges R, Näther C, Renth F, Temps F. J. Am. Chem. Soc. 2009; 131: 15594
  • 66 Moormann W, Langbehn D, Herges R. Beilstein J. Org. Chem. 2019; 15: 727
    • 67a Joshi DK, Mitchell MJ, Bruce D, Lough AJ, Yan H. Tetrahedron 2012; 68: 8670
    • 67b Eljabu F, Dhruval J, Yan H. Bioorg. Med. Chem. Lett. 2015; 25: 5594
    • 67c Cabré G, Garrido-Charles A, González-Lafont À, Moormann W, Langbehn D, Egea D, Lluch JM, Herges R, Alibés R, Busqué F, Gorostiza P, Hernando J. Org. Lett. 2019; 21: 3780
    • 67d Trads JB, Hüll K, Matsuura BS, Laprell L, Fehrentz T, Görldt N, Kozek KA, Weaver CD, Klöcker N, Barber DM, Trauner D. Angew. Chem. Int. Ed. 2019; 58: 15421
    • 67e Thapaliya ER, Zhao J, Ellis-Davies GC. R. ACS Chem. Neurosci. 2019; 10: 2481
    • 68a Tellkamp T, Shen J, Okamoto Y, Herges R. Eur. J. Org. Chem. 2014; 5456
    • 68b Moormann W, Langbehn D, Herges R. Synthesis 2017; 49: 3471
    • 68c Samanta S, Qin C, Lough AJ, Woolley GA. Angew. Chem. Int. Ed. 2012; 51: 6452
    • 68d Li S, Han G, Zhang W. Macromolecules 2018; 51: 4290
    • 68e Deo C, Bogliotti N, Métivier R, Retailleau P, Xie J. Chem. Eur. J. 2016; 22: 9092
    • 69a Wang J, He J, Zhi C, Luo B, Li X, Pan Y, Cao X, Gu H. RSC Adv. 2014; 4: 16607
    • 69b Maier MS, Hüll K, Reynders M, Matsuura BS, Leippe P, Ko T, Schäffer L, Trauner D. J. Am. Chem. Soc. 2019; 141: 17295
  • 70 Li S, Eleya N, Staubitz A. Org. Lett. 2020; 22: 1624
  • 71 Jun M, Joshi DK, Yalagala RS, Vanloon J, Simionescu R, Lough AJ, Gordon HL, Yan H. ChemistrySelect 2018; 3: 2697
  • 72 Zhu Q, Wang S, Chen P. Org. Lett. 2019; 21: 4025