CC BY-NC-ND 4.0 · SynOpen 2020; 04(04): 123-131
DOI: 10.1055/s-0040-1706004
paper

Traceless Redox-Annulations of Alicyclic Amines

Dillon R. L. Rickertsen
a  Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
,
Longle Ma
b  Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
,
Anirudra Paul
a  Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
,
Khalil A. Abboud
c  Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
,
a  Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
› Author Affiliations
Financial support from the NIH–NIGMS (Grant R01GM101389) is gratefully acknowledged. We further acknowledge the National Science Foundation (grant # 1828064 to K.A.A.) and the University of Florida for funding the purchase of the X-ray equipment.


Abstract

Amines such as 1,2,3,4-tetrahydroisoquinoline undergo redox­-neutral annulations with ortho-(nitromethyl)benzaldehyde. Benzoic­ acid acts as a promoter in these reactions, which involve concurrent amine α-C–H bond and N–H bond functionalization. Subsequent removal of the nitro group provides access to tetrahydroprotoberberines not accessible via typical redox-annulations. Also reported are decarboxylative annulations of ortho-(nitromethyl)benzaldehyde with proline and pipecolic acid.

Supporting Information



Publication History

Received: 12 November 2020

Accepted after revision: 04 December 2020

Publication Date:
16 December 2020 (online)

© 2020. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected recent reviews on amine C–H functionalization, including redox-neutral approaches:
    • 1a Campos KR. Chem. Soc. Rev. 2007; 36: 1069
    • 1b Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
    • 1c Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 1d Mitchell EA, Peschiulli A, Lefevre N, Meerpoel L, Maes BU. W. Chem. Eur. J. 2012; 18: 10092
    • 1e Jones KM, Klussmann M. Synlett 2012; 23: 159
    • 1f Peng B, Maulide N. Chem. Eur. J. 2013; 19: 13274
    • 1g Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 1h Haibach MC, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5010
    • 1i Wang L, Xiao J. Adv. Synth. Catal. 2014; 356: 1137
    • 1j Vo C.-VT, Bode JW. J. Org. Chem. 2014; 79: 2809
    • 1k Seidel D. Org. Chem. Front. 2014; 1: 426
    • 1l Qin Y, Lv J, Luo S. Tetrahedron Lett. 2014; 55: 551
    • 1m Seidel D. Acc. Chem. Res. 2015; 48: 317
    • 1n Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
    • 1o Mahato S, Jana CK. Chem. Rec. 2016; 16: 1477
    • 1p Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
    • 1q Cheng M.-X, Yang S.-D. Synlett 2017; 28: 159
    • 1r Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 1s Gonnard L, Guérinot A, Cossy J. Tetrahedron 2019; 75: 145
    • 1t Liu S, Zhao Z, Wang Y. Chem. Eur. J. 2019; 25: 2423
    • 1u Antermite D, Bull JA. Synthesis 2019; 51: 3171
    • 1v Trowbridge A, Walton SM, Gaunt MJ. Chem. Rev. 2020; 120: 2613

      Recent examples of mechanistically diverse amine C–H bond functionalization reactions:
    • 2a Zhao Z, Luo Y, Liu S, Zhang L, Feng L, Wang Y. Angew. Chem. Int. Ed. 2018; 57: 3792
    • 2b Wang F, Rafiee M, Stahl SS. Angew. Chem. Int. Ed. 2018; 57: 6686
    • 2c Greßies S, Klauck FJ. R, Kim JH, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2018; 57: 9950
    • 2d Griffiths RJ, Kong WC, Richards SA, Burley GA, Willis MC, Talbot EP. A. Chem. Sci. 2018; 9: 2295
    • 2e Idiris FI. M, Majeste CE, Craven GB, Jones CR. Chem. Sci. 2018; 9: 2873
    • 2f Li S.-S, Lv X, Ren D, Shao C.-L, Liu Q, Xiao J. Chem. Sci. 2018; 9: 8253
    • 2g Maier AF. G, Tussing S, Zhu H, Wicker G, Tzvetkova P, Flörke U, Daniliuc CG, Grimme S, Paradies J. Chem. Eur. J. 2018; 24: 16287
    • 2h Mori K, Isogai R, Kamei Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2018; 140: 6203
    • 2i Shang M, Chan JZ, Cao M, Chang Y, Wang Q, Cook B, Torker S, Wasa M. J. Am. Chem. Soc. 2018; 140: 10593
    • 2j Lennox AJ. J, Goes SL, Webster MP, Koolman HF, Djuric SW, Stahl SS. J. Am. Chem. Soc. 2018; 140: 11227
    • 2k Zhang J, Park S, Chang S. J. Am. Chem. Soc. 2018; 140: 13209
    • 2l Nauth AM, Schechtel E, Dören R, Tremel W, Opatz T. J. Am. Chem. Soc. 2018; 140: 14169
    • 2m Jiang H.-J, Zhong X.-M, Yu J, Zhang Y, Zhang X, Wu Y.-D, Gong L.-Z. Angew. Chem. Int. Ed. 2019; 58: 1803
    • 2n Ashley MA, Yamauchi C, Chu JC. K, Otsuka S, Yorimitsu H, Rovis T. Angew. Chem. Int. Ed. 2019; 58: 4002
    • 2o Guin S, Dolui P, Zhang X, Paul S, Singh VK, Pradhan S, Chandrashekar HB, Anjana SS, Paton RS, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 5633
    • 2p Whitehurst WG, Blackwell JH, Hermann GN, Gaunt MJ. Angew. Chem. Int. Ed. 2019; 58: 9054
    • 2q Ma Y, Yao X, Zhang L, Ni P, Cheng R, Ye J. Angew. Chem. Int. Ed. 2019; 58: 16548
    • 2r Grainger R, Heightman TD, Ley SV, Lima F, Johnson CN. Chem. Sci. 2019; 10: 2264
    • 2s Vasu D, Fuentes de Arriba AL, Leitch JA, de Gombert A, Dixon DJ. Chem. Sci. 2019; 10: 3401
    • 2t Asako S, Ishihara S, Hirata K, Takai K. J. Am. Chem. Soc. 2019; 141: 9832
    • 2u Lin W, Zhang K.-F, Baudoin O. Nat. Catal. 2019; 2: 882
    • 2v Chan JZ, Chang Y, Wasa M. Org. Lett. 2019; 21: 984
    • 2w Zhou L, Shen Y.-B, An X.-D, Li X.-J, Li S.-S, Liu Q, Xiao J. Org. Lett. 2019; 21: 8543
    • 2x Kataoka M, Otawa Y, Ido N, Mori K. Org. Lett. 2019; 21: 9334
    • 2y Lee M, Adams A, Cox PB, Sanford MS. Synlett 2019; 30: 417
    • 2z Kapoor M, Chand-Thakuri P, Maxwell JM, Liu D, Zhou H, Young MC. Synlett 2019; 30: 519
    • 2aa Ohmatsu K, Suzuki R, Furukawa Y, Sato M, Ooi T. ACS Catal. 2020; 10: 2627
    • 2ab Roque JB, Kuroda Y, Jurczyk J, Xu L.-P, Ham JS, Göttemann LT, Roberts CA, Adpressa D, Saurí J, Joyce LA, Musaev DG, Yeung CS, Sarpong R. ACS Catal. 2020; 10: 2929
    • 2ac Rand AW, Yin H, Xu L, Giacoboni J, Martin-Montero R, Romano C, Montgomery J, Martin R. ACS Catal. 2020; 10: 4671
    • 2ad Liu W, Babl T, Röther A, Reiser O, Davies HM. L. Chem. Eur. J. 2020; 26: 4236
    • 2ae Verma P, Richter JM, Chekshin N, Qiao JX, Yu J.-Q. J. Am. Chem. Soc. 2020; 142: 5117
    • 2af Walker MM, Koronkiewicz B, Chen S, Houk KN, Mayer JM, Ellman JA. J. Am. Chem. Soc. 2020; 142: 8194
    • 2ag Feng K, Quevedo RE, Kohrt JT, Oderinde MS, Reilly U, White MC. Nature 2020; 580: 621
    • 2ah Sarver PJ, Bacauanu V, Schultz DM, DiRocco DA, Lam Y.-h, Sherer EC, MacMillan DW. C. Nat. Chem. 2020; 12: 459
    • 2ai McManus JB, Onuska NP. R, Jeffreys MS, Goodwin NC, Nicewicz DA. Org. Lett. 2020; 22: 679
    • 2aj Oeschger R, Su B, Yu I, Ehinger C, Romero E, He S, Hartwig J. Science 2020; 368: 736
    • 2ak Short MA, Blackburn JM, Roizen JL. Synlett 2020; 31: 102
    • 3a Zhang C, De C K, Mal R, Seidel D. J. Am. Chem. Soc. 2008; 130: 416
    • 3b Zheng L, Yang F, Dang Q, Bai X. Org. Lett. 2008; 10: 889
    • 3c Dieckmann A, Richers MT, Platonova AY, Zhang C, Seidel D, Houk KN. J. Org. Chem. 2013; 78: 4132
    • 3d Richers MT, Deb I, Platonova AY, Zhang C, Seidel D. Synthesis 2013; 45: 1730
    • 4a Richers MT, Breugst M, Platonova AY, Ullrich A, Dieckmann A, Houk KN, Seidel D. J. Am. Chem. Soc. 2014; 136: 6123
    • 4b Jarvis CL, Richers MT, Breugst M, Houk KN, Seidel D. Org. Lett. 2014; 16: 3556
    • 4c Mahato S, Haque MA, Dwari S, Jana CK. RSC Adv. 2014; 4: 46214
    • 5a Ma L, Seidel D. Chem. Eur. J. 2015; 21: 12908
    • 5b Paul A, Chandak HS, Ma L, Seidel D. Org. Lett. 2020; 22: 976
    • 6a Li J, Qin C, Yu Y, Fan H, Fu Y, Li H, Wang W. Adv. Synth. Catal. 2017; 359: 2191
    • 6b Li J, Fu Y, Qin C, Yu Y, Li H, Wang W. Org. Biomol. Chem. 2017; 15: 6474
    • 6c Zhu Z, Seidel D. Org. Lett. 2017; 19: 2841
  • 7 Paul A, Adili A, Seidel D. Org. Lett. 2019; 21: 1845

    • Additional examples of amine redox-annulations:
    • 8a Zhang C, Das D, Seidel D. Chem. Sci. 2011; 2: 233
    • 8b Kang Y, Chen W, Breugst M, Seidel D. J. Org. Chem. 2015; 80: 9628
    • 8c Chen W, Seidel D. Org. Lett. 2016; 18: 1024
    • 8d Zhu Z, Lv X, Anesini JE, Seidel D. Org. Lett. 2017; 19: 6424
    • 8e Zhu Z, Chandak HS, Seidel D. Org. Lett. 2018; 20: 4090
    • 8f Liu Y, Wu J, Jin Z, Jiang H. Synlett 2018; 29: 1061

      For detailed discussions on the mechanisms of these transformations, see references:
    • 9a Xue X, Yu A, Cai Y, Cheng J.-P. Org. Lett. 2011; 13: 6054
    • 9b Ma L, Paul A, Breugst M, Seidel D. Chem. Eur. J. 2016; 22: 18179 ; see also refs 1m, 3c, 4a, 4b, and 8b

      Examples of redox-neutral α-C–H bond annulations of secondary amines that likely involve a pericyclic step:
    • 10a Grigg R, Nimal Gunaratne HQ, Henderson D, Sridharan V. Tetrahedron 1990; 46: 1599
    • 10b Soeder RW, Bowers K, Pegram LD, Cartaya-Marin CP. Synth. Commun. 1992; 22: 2737
    • 10c Grigg R, Kennewell P, Savic V, Sridharan V. Tetrahedron 1992; 48: 10423
    • 10d Deb I, Seidel D. Tetrahedron Lett. 2010; 51: 2945
    • 10e Kang Y, Richers MT, Sawicki CH, Seidel D. Chem. Commun. 2015; 51: 10648
    • 10f Cheng Y.-F, Rong H.-J, Yi C.-B, Yao J.-J, Qu J. Org. Lett. 2015; 17: 4758
    • 10g Yang Z, Lu N, Wei Z, Cao J, Liang D, Duan H, Lin Y. J. Org. Chem. 2016; 81: 11950
    • 10h Rong H.-J, Cheng Y.-F, Liu F.-F, Ren S.-J, Qu J. J. Org. Chem. 2017; 82: 532
    • 10i Purkait A, Roy SK, Srivastava HK, Jana CK. Org. Lett. 2017; 19: 2540
    • 11a Chrzanowska M, Rozwadowska MD. Chem. Rev. 2004; 104: 3341
    • 11b Grycova L, Dostal J, Marek R. Phytochemistry 2007; 68: 150
    • 11c Bhadra K, Kumar GS. Med. Res. Rev. 2011; 31: 821
    • 11d Yu J, Zhang Z, Zhou S, Zhang W, Tong R. Org. Chem. Front. 2018; 5: 242
    • 12a Enders D, Wang C, Bats JW. Synlett 2009; 1777
    • 12b Enders D, Hahn R, Atodiresei I. Adv. Synth. Catal. 2013; 355: 1126
    • 12c Hahn R, Jafari E, Raabe G, Enders D. Synthesis 2015; 47: 472
  • 13 Fessard TC, Motoyoshi H, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 2078
  • 14 Ono N, Miyake H, Kamimura A, Hamamoto I, Tamura R, Kaji A. Tetrahedron 1985; 41: 4013

    • Decarboxylative annulations:
    • 15a Cohen N, Blount JF, Lopresti RJ, Trullinger DP. J. Org. Chem. 1979; 44: 4005
    • 15b Tang M, Tong L, Ju L, Zhai W, Hu Y, Yu X. Org. Lett. 2015; 17: 5180
    • 15c Kang Y, Seidel D. Org. Lett. 2016; 18: 4277
    • 15d Wu J.-s, Jiang H.-j, Yang J.-g, Jin Z.-n, Chen D.-b. Tetrahedron Lett. 2017; 58: 546
    • 15e Paul A, Thimmegowda NR, Galani Cruz T, Seidel D. Org. Lett. 2018; 20: 602 ; see also references 3a, 3b, 3d, 5b, 6c, 8a, 8e, and 14.

      Selected reviews on decarboxylative coupling reactions not limited to amino acids:
    • 16a Rodriguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
    • 16b Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 16c Patra T, Maiti D. Chem. Eur. J. 2017; 23: 7382
    • 16d Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 16e Rahman M, Mukherjee A, Kovalev IS, Kopchuk DS, Zyryanov GV, Tsurkan MV, Majee A, Ranu BC, Charushin VN, Chupakhin ON, Santra S. Adv. Synth. Catal. 2019; 361: 2161
    • 17a Kind T, Fiehn O. BMC Bioinformatics 2007; 8: 105
    • 17b Wang Y, Gu M. Anal. Chem. 2010; 82: 7055

      Starting material synthesis:
    • 18a Ghislieri D, Green AP, Pontini M, Willies SC, Rowles I, Frank A, Grogan G, Turner NJ. J. Am. Chem. Soc. 2013; 135: 10863
    • 18b Gray NM, Cheng BK, Mick SJ, Lair CM, Contreras PC. J. Med. Chem. 1989; 32: 1242
    • 18c Ji Y, Wang J, Chen M, Shi L, Zhou Y. Chin. J. Chem. 2018; 36: 139
    • 18d Tamayo NA, Bo Y, Gore V, Ma V, Nishimura N, Tang P, Deng H, Klionsky L, Lehto SG, Wang W, Youngblood B, Chen J, Correll TL, Bartberger MD, Gavva NR, Norman MH. J. Med. Chem. 2012; 55: 1593
    • 18e Ji Y, Shi L, Chen M.-W, Feng G.-S, Zhou Y.-G. J. Am. Chem. Soc. 2015; 137: 10496
    • 18f Zhao Z, Sun Y, Wang L, Chen X, Sun Y, Lin L, Tang Y, Li F, Chen D. Tetrahedron Lett. 2019; 60: 800
    • 18g Schönbauer D, Sambiagio C, Noël T, Schnürch M. Beilstein J. Org. Chem. 2020; 16: 809
    • 18h Cutter PS, Miller R, Schore NE. Tetrahedron 2002; 58: 1471
    • 18i Bailey DM, Degrazia CG, Lape HE, Frering R, Fort D, Skulan T. J. Med. Chem. 1973; 16: 151
    • 18j See also ref 12b.
    • 19a Kraus GA, Wu TA. Tetrahedron 2010; 66: 569
    • 19b Dai-Ho G, Mariano PS. J. Org. Chem. 1988; 53: 5113
    • 19c Orito K, Satoh Y, Nishizawa H, Harada R, Tokuda M. Org. Lett. 2000; 2: 2535
    • 19d Azzena U. J. Chem. Soc., Perkin Trans. 1 2002; 360
    • 19e Lahm G, Stoye A, Opatz T. J. Org. Chem. 2012; 77: 6620