CC BY-NC-ND 4.0 · SynOpen 2021; 05(01): 49-64
DOI: 10.1055/s-0040-1706018
review

A Review of Heterolytic Synthesis Methodologies for Organotri- and Organotetrasulfane Synthesis

Doaa Ali
a   Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
b   Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
,
a   Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
,
a   Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
,
b   Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
,
Roger Hunter
a   Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
› Institutsangaben
The authors thank the Organisation for Women in Science for the Developing World and the South African National Research Foundation for bursaries for Ms Doaa Ali and Mr Yasien Amer, respectively.


Abstract

It has been ten years since the last comprehensive review on polysulfanes, and during the intervening period, organodi-, organotri- and organotetrasulfanes have featured prominently in both the chemistry and biology literature. This timely update presents both a mechanistic and historical account of synthesis methodology available for organotri- and organotetrasulfanes involving heterolytic S–S bond formation.



Publikationsverlauf

Eingereicht: 05. Januar 2021

Angenommen nach Revision: 20. Januar 2021

Artikel online veröffentlicht:
16. Februar 2021

© 2021. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 2 Kim J, Movassaghi M. J. Am. Chem. Soc. 2010; 132: 14376
    • 3a Cerda MM, Hammers MD, Earp MS, Zakharov LN, Pluth MD. Org. Lett. 2017; 19: 2314
    • 3b Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chem. Rev. 2018; 118: 1253
  • 4 Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Mol. Cancer Res. 2020; 18: 3
  • 5 Wang D.-Y, Guo W, Fu Y. Acc. Chem. Res. 2019; 52: 2290
    • 6a Mandal B, Basu B. RSC Adv. 2014; 4: 13854
    • 6b Musiejuk M, Witt D. Org. Prep. Proced. Int. 2015; 47: 95
    • 6c Wang M, Jiang X. Top. Curr. Chem. 2018; 376: 14
    • 7a Strecker W. Ber. Dtsch. Chem. Ges. 1908; 41: 1105
    • 7b See also: Fehér F, Krause G, Vogelbruch K. Chem. Ber. 1957; 90: 1570
  • 8 Riding RW, Thomas JS. J. Chem. Soc., Trans. 1923; 123: 3271
    • 9a Filipponen I, Guerra A, Hai A, Lucia LA, Argyropoulos DS. Ind. Eng. Chem. Res. 2006; 45: 7388
    • 9b Amrani A, Kamyshny AJr, Lev O, Aizenshtat Z. J. Inorg. Chem. 2006; 45: 1427
    • 10a Fuson RC, Price CC, Burness DM, Foster RE, Hatchard WR, Lipscomb RD. Levinstein. J. Org. Chem. 1946; 11: 487
    • 10b Salivon NF, Filinchuk YE, Olijnyk VV. Z. Anorg. Allg. Chem. 2006; 62: 1610
  • 11 Dannley RL, Zazaris DA. Can. J. Chem. 1965; 43: 2610
    • 12a Morel G, Marchand E, Foucand A. Synthesis 1980; 918
    • 12b Korchevin NA, Turchaninova LP, Deryagina EN, Voronkov MG. Zh. Obshch. Khim. 1989; 59: 1785
    • 12c Deryagina EN, Kozlov IA, Vershal VV, Babkin VA. Zh. Obshch. Khim. 1996; 66: 1279
  • 13 Nobuo Y, Mutsuhisa F, Masayuki N, Toshikazu T. Chem. Lett. 2002; 31: 454
  • 14 Sinha P, Kundu A, Roy S, Prabhakar S, Vairamani M. Organometallics 2001; 20: 157
  • 15 Labuk P, Duda A, Penczek S. Phosphorus, Sulfur Silicon Relat. Elem. 1989; 42: 107
  • 16 Ahrika A, Robert J, Anouti M, Paris J. Acta Chem. Scand. 1999; 53: 513
  • 17 Baker A, Graz M, Saunders R, Evans GJ. S, Kaul S, Wirth T. J. Flow Chem. 2013; 3: 118
  • 18 Zheng S, Liao M, Chen Y, Brook MA. Green Chem. 2020; 22: 94
  • 19 Milligan B, Saville B, Swan JM. J. Chem. Soc. 1961; 4850
  • 20 Milligan B, Saville B, Swan JM. J. Chem. Soc. 1963; 3608
  • 21 Bunte H. Ber. Dtsch. Chem. Ges. 1874; 7: 646
  • 22 Qiao Z, Jiang X. Org. Biomol. Chem. 2017; 15: 1942
  • 23 Bhattacherjee D, Sufian A, Mahato SK, Begum S, Banerjee K, De S, Srivastava HK, Bhabak KP. Chem. Commun. 2019; 55: 13534
  • 24 Milligan B, Swan JM. J. Chem. Soc. 1965; 2901
  • 25 Buckman JD, Field L. J. Org. Chem. 1967; 32: 454
    • 26a Fehér F, Berthold HJ. Chem. Ber. 1955; 88: 1634
    • 26b Pitombo LR. M. Chem. Ber. 1962; 95: 2960
    • 26c Wilson RM, Buchanan DN. In Methodicum Chimicum, Vol. 7, Chap. 33. Zimmer H, Niedenzu K. Thieme; New York: 1976
    • 26d Gunderman KD, Hümke K. In Methoden der Organischen Chemie, Vol. E 11 (Teilband 1). Klamann D. Thieme; Stuttgart: 1985: 148
    • 26e Munavalli S, Muller AJ, Rossman DI, Rohrbaugh DK, Ferguson CP. J. Fluorine Chem. 1994; 67: 37
  • 27 Capozzi G, Capperucci A, Degl’Innocenti A, Del Duce R, Menichetti S. Tetrahedron Lett. 1989; 30: 2991
  • 28 Viglianisi C, Bonardi C, Ermini E, Capperucci A, Menichetti S, Tanini D. Synthesis 2019; 51: 1819
  • 29 Harpp DN, Gingras M, Aida T, Chan TH. Synthesis 1987; 1122
  • 30 Steudel R, Pridöhl M, Buschmann J, Luger P. Chem. Ber. 1995; 128: 725
  • 31 Chakravarti GC. J. Chem. Soc., Trans. 1923; 123: 964
  • 32 Clayton JO, Etzler DH. J. Am. Chem. Soc. 1947; 69: 974
  • 33 Nakabayashi T, Tsurugi J, Yabuta T. J. Org. Chem. 1964; 29: 1236
  • 34 Bloch I, Bergmann M. Ber. Dtsch. Chem. Ges. 1920; 53: 961
  • 35 Twiss D. J. Am. Chem. Soc. 1927; 49: 491
  • 36 Fehér F, Weber H. Chem. Ber. 1958; 91: 642
  • 37 Abel EW, Armitage DA. J. Chem. Soc. 1964; 5975
  • 38 Wardell JL, Clarke PL. J. Organomet. Chem. 1971; 26: 345
  • 39 Steudel R, Kustos M, Münchow V, Westphal U. Chem.Ber./Recl. 1997; 130: 757
  • 40 Barany G, Mott AW. J. Org. Chem. 1984; 49: 1043
  • 41 Harpp DN, Derbesy G. Tetrahedron Lett. 1994; 35: 5381
  • 42 Czepukojc B, Viswanathan UM, Raza A, Ali S, Burkholz T, Jacob C. Phosphorus, Sulfur Silicon Relat. Elem. 2013; 188: 446
  • 43 Rezkallah D, Schwind L, Abuasali I, Nasim J, Jacob C, Gotz C, Montenarh M. Int. J. Oncol. 2015; 47: 991
  • 44 Zysman-Colman E, Harpp DN. J. Org. Chem. 2003; 68: 2487
  • 45 Kresze G, Patzschke H. Chem. Ber. 1960; 93: 380
  • 46 Sullivan AB, Boustany K. Int. J. Sulfur Chem., Part A 1971; 1: 207
    • 47a Harpp DN, Ash DK. Int. J. Sulfur Chem., Part A 1971; 1: 57
    • 47b Harpp DN, Ash DK. Int. J. Sulfur Chem., Part A 1971; 1: 211
    • 47c Harpp DN, Back TG. Tetrahedron Lett. 1972; 1481
  • 48 Naik KG. J. Chem. Soc., Trans. 1921; 119: 1166
  • 49 Kalnins MV. Can. J. Chem. 1966; 44: 2111
  • 50 Harpp DN, Steliou K, Chan TH. J. Am. Chem. Soc. 1978; 100: 1222
  • 51 Harpp DN, Smith RA, Steliou K. J. Org. Chem. 1981; 46: 2072
  • 52 Banerji A, Kalena GP. Tetrahedron Lett. 1980; 21: 3003
  • 53 An H, Zhu J, Wang X, Xu X. Bioorg. Med. Chem. Lett. 2006; 16: 4826
  • 54 Mott AW, Barany G. Synthesis 1984; 657
    • 55a Vineyard BD. J. Org. Chem. 1966; 31: 601
    • 55b Vineyard BD. J. Org. Chem. 1967; 32: 3833
  • 56 Gaensslen M, Minkwitz R, Molzbeck W, Oberhammer H. Inorg. Chem. 1992; 31: 4147
  • 57 Gombler W, Seel F. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1975; 30: 169
  • 58 Zack NR, Shreeve JM. Inorg. Nucl. Chem. Lett. 1974; 10: 619
    • 59a Park C.-M, Weerasinghe L, Day JJ, Fukuto JM, Xian M. Mol. BioSyst. 2015; 11: 1775
    • 59b Bora P, Chauhan P, Pardeshi KA, Chakrapani H. RSC Adv. 2018; 8: 27359
    • 59c Benchoam D, Cuevasanta E, Möller MN, Alvarez B. Antioxidants 2019; 8: 48
  • 60 Böhme H, Zinner G. Justus Liebigs Ann. Chem. 1954; 585: 142
  • 61 Kang J, Ferrell AJ, Chen W, Wang D, Xian M. Org. Lett. 2018; 20: 852
  • 62 Nakabayashi T, Tsurugi J. J. Org. Chem. 1961; 26: 2482
  • 63 Kharasch N, Potempa SJ, Wehrmeister HL. Chem. Rev. 1946; 39: 269
  • 64 Thea S, Cevasco G. Tetrahedron Lett. 1988; 29: 2865
  • 65 Kawamura S, Abe Y, Tsurugi J. J. Org. Chem. 1969; 34: 3633
  • 66 Xiao X, Feng M, Jiang X. Angew. Chem. Int. Ed. 2016; 55: 14121
  • 67 Takano S, Hiroya K, Ogasawara K. Chem. Lett. 1983; 12: 255
  • 68 Fujiki K, Tanifuji N, Sasaki Y, Yokoyama T. Synthesis 2002; 343
  • 69 Harpp DN, Ash DK, Back TG, Gleason JG, Orwig BA, VanHorn WF, Snyder JP. Tetrahedron Lett. 1970; 3551
  • 70 Harpp DN, Granata A. Tetrahedron Lett. 1976; 3001
  • 71 Bailey TS, Zakharov LN, Pluth MD. J. Am. Chem. Soc. 2014; 136: 10573
  • 72 Lach S, Witt D. Synlett 2013; 24: 1927
  • 73 Xu S, Wang Y, Radford MN, Ferrell AJ, Xian M. Org. Lett. 2018; 20: 465
  • 74 Ali D, Hunter R, Kaschula CH, De Doncker S, Rees-Jones SC. M. J. Org. Chem. 2019; 84: 2862
  • 75 Bolton SG, Cerda MM, Gilbert AK, Pluth MD. Free Radical Biol. Med. 2019; 131: 393
  • 76 Lach S, Witt D. Heteroat. Chem. 2014; 25: 10
  • 77 Böhme H, Clement M. Justus Liebigs Ann. Chem. 1952; 576: 61
  • 78 Bohme H, van Ham G. Justus Liebigs Ann. Chem. 1958; 617: 62
  • 79 Fehér F, Kruse W. Chem. Ber. 1958; 91: 2528
  • 80 Williams CR, Britten JF, Harpp DN. J. Org. Chem. 1994; 59: 806
    • 81a Rys AZ, Harpp DN. Tetrahedron Lett. 2000; 41: 7169
    • 81b Hou Y, Abu-Yousef IA, Harpp DN. Tetrahedron Lett. 2000; 41: 7809
    • 81c Hou Y, Abu-Yousef IA, Doung Y, Harpp DN. Tetrahedron Lett. 2001; 42: 8607
    • 81d Abu-Yousef I, Rys AZ, Harpp DN. J. Sulfur Chem. 2006; 27: 15
    • 81e Abu-Yousef IA, Rys AZ, Harpp DN. J. Sulfur Chem. 2007; 28: 251
    • 81f For insertion of sulfur into polysulfanes using a Rh(I) catalyst, see: Arisawa M, Tanaka K, Yamaguchi M. Tetrahedron Lett. 2005; 46: 4797
  • 82 Lach S, Sliwka-Kaszynska M, Witt D. Synlett 2010; 2857
  • 83 Wang W, Lin Y, Ma Y, Tung C.-H, Xu Z. Org. Lett. 2018; 20: 3829
  • 84 Xiao X, Xue J, Jiang X. Nat. Commun. 2018; 9: 2191
  • 85 Haseltine JN, Cabal MP, Mantlo NB, Iwasawa N, Yamashita DS, Coleman RS, Danishefsky SJ, Schulte GK. J. Am. Chem. Soc. 1991; 113: 3850
  • 86 Nicolaou KC, Li R, Lu Z, Pitsinos EN, Alemany LB, Aujay M, Lee C, Sandoval J, Gavrilyuk J. J. Am. Chem. Soc. 2018; 140: 12120
  • 87 Harpp DN, Friedlander BT, Larsen C, Steliou K, Stockton A. J. Org. Chem. 1978; 43: 3481
  • 88 Ercole F, Whittaker MR, Halls ML, Boyd BJ, Davis TP, Quinn JF. Chem. Commun. 2017; 53: 8030
    • 89a Harpp DN, Ash DK, Smith RA. J. Org. Chem. 1979; 44: 4135
    • 89b Williams CR, Macdonald JG, Harpp DN, Steudel R, Foerster S. Sulfur Lett. 1992; 13: 247
  • 90 Xue J, Jiang X. Nat. Commun. 2020; 11: 4170
  • 91 Kagami H, Motoki S. J. Org. Chem. 1977; 42: 4139
  • 92 Xue J, Jiang X. Org. Lett. 2020; 22: 8044
  • 93 Oka M, Katsube D, Tsuji T, Iida H. Org. Lett. 2020; 22: 9244
    • 94a Qiu X, Yang X, Zhang Y, Song S, Jiao N. Org. Chem. Front. 2019; 6: 2220
    • 94b Song L, Li W, Duan W, An J, Tang S, Li L, Yang G. Green Chem. 2019; 21: 1432
  • 95 Li X.-B, Li Z.-J, Gao Y.-J, Meng Q.-Y, Yu S, Weiss RG, Tung C.-H, Wu L.-Z. Angew. Chem. Int. Ed. 2014; 53: 2085 ; Angew. Chem. 2014, 126, 2117
  • 96 Huang P, Wang P, Tang S, Fu Z, Lei A. Angew. Chem. Int. Ed. 2018; 57: 8115 ; Angew. Chem. 2018, 130, 8247
  • 97 Wu Z, Pratt DA. J. Am. Chem. Soc. 2020; 142: 10284