Synlett 2021; 32(06): 631-635
DOI: 10.1055/s-0040-1706638
letter

Synthesis of Diarylethynes from Aryldiazonium Salts by Using Calcium Carbide as an Alkyne Source in a Deep Eutectic Solvent

Xiaolong Ma
,
Zheng Li
The authors thank the National Natural Science Foundation of China (21462038) for financial support of this work.


Abstract

An efficient method for the synthesis of diarylethynes from aryldiazonium salts by using calcium carbide as an alkyne source at room temperature in a deep eutectic solvent is described. The salient features of this protocol are an inexpensive and easy-to-handle alkyne source, a nonvolatile and recyclable solvent, mild conditions, and a simple workup procedure.

Supporting Information



Publication History

Received: 10 October 2020

Accepted after revision: 16 November 2020

Article published online:
14 December 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Yuan LZ, Hamze A, Alami M, Provot O. Synthesis 2017; 49: 504
    • 1b Muzart J. J. Mol. Catal. A: Chem. 2011; 338: 7
    • 1c Liu Y, Zhang G, Huang H. Org. Lett. 2017; 19: 6674
    • 1d Han YR, Shim S.-H, Kim D.-S, Jun C.-H. Org. Lett. 2017; 19: 2941
    • 1e Guo B, Zheng L, Zhang L, Hua R. J. Org. Chem. 2015; 80: 8430
    • 1f Tsuji H, Ueda Y, Ilies L, Nakamura E. J. Am. Chem. Soc. 2010; 132: 11854
  • 2 Thompson BB, Montgomery J. Org. Lett. 2011; 13: 3289
  • 3 Domaradzki ME, Long YH, She ZG, Liu XC, Zhang G, Chen Y. J. Org. Chem. 2015; 80: 11360
  • 4 Xie H.-Z, Gao Q, Liang Y, Wang H.-S, Pan Y.-M. Green Chem. 2014; 16: 2132
  • 5 Xu J, Song X, Zhao J. Chin. J. Chem. 2014; 32: 1099
  • 6 Li J.-H, Huang Q, Wang S.-Y, Ji S.-J. Org. Lett. 2018; 20: 4704
    • 7a Chinchilla R, Nájera C. Chem. Rev. 2007; 107: 874
    • 7b Chinchilla R, Nájera C. Chem. Soc. Rev. 2011; 40: 5084
    • 7c Nagy A, Novák Z, Kotschy A. J. Organomet. Chem. 2005; 690: 4453
    • 7d Akhtar R, Zahoor AF, Parveen B, Suleman M. Synth. Commun. 2019; 49: 167
    • 7e Nasrollahzadeh M, Atarod M, Alizadeh M, Hatamifard A, Sajadi SM. Curr. Org. Chem. 2017; 21: 708
    • 7f Karak M, Barbosa LC. A, Hargaden GC. RSC Adv. 2014; 4: 53442
    • 7g Thomas AM, Sujatha A, Anilkumar G. RSC Adv. 2014; 4: 21688
    • 7h Bakherad M. Appl. Organomet. Chem. 2013; 27: 125
    • 7i Matake R, Niwa Y, Matsubara H. Org. Lett. 2015; 17: 2354
    • 8a Prabhala P, Savanur HM, Kalkhambkar RG, Laali KK. Eur. J. Org. Chem. 2019; 2061
    • 8b Jadhav VG, Sarode SA, Nagarkar JM. Tetrahedron Lett. 2015; 56: 1771
    • 8c Barbero M, Cadamuro S, Dughera S. Eur. J. Org. Chem. 2014; 598
    • 8d Fabrizi G, Goggiamani A, Sferrazza A, Cacchi S. Angew. Chem. Int. Ed. 2010; 49: 4067
    • 8e Yang L, Li H, Du Y, Cheng K, Qi C. Adv. Synth. Catal. 2019; 361: 5030
    • 8f Cai R, Lu M, Aguilera EY, Xi Y, Akhmedov NG, Petersen JL, Chen H, Shi X. Angew. Chem. Int. Ed. 2015; 54: 8772
    • 8g Panda B, Sarkar TK. Chem. Commun. 2010; 46: 3131
    • 8h Kim S, Rojas-Martin J, Toste FD. Chem. Sci. 2016; 7: 85
    • 8i Tlahuext-Aca A, Hopkinson MN, Sahoo B, Glorius F. Chem. Sci. 2016; 7: 89
    • 9a Jiang Y, Kuang C, Yang Q. Synlett 2009; 3163
    • 9b Yang Q, Jiang Y, Kuang C. Helv. Chim. Acta 2012; 95: 448
    • 9c Lin Z, Yu D, Sum YN, Zhang Y. ChemSusChem 2012; 5: 625
    • 9d Yu D, Sum YN, Ean AC. C, Chin MP, Zhang Y. Angew. Chem. Int. Ed. 2013; 52: 5125
    • 9e Sum YN, Yu D, Zhang Y. Green Chem. 2013; 15: 2718
    • 9f Thavornsin N, Sukwattanasinitt M, Wacharasindhu S. Polym. Chem. 2014; 5: 48
    • 9g Hosseini A, Seidel D, Miska A, Schreiner PR. Org. Lett. 2015; 17: 2808
    • 9h Kaewchangwat N, Sukato R, Vchirawongkwin V, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S. Green Chem. 2015; 17: 460
    • 9i Rodygin KS, Ananikov VP. Green Chem. 2016; 18: 482
    • 9j Rodygin KS, Werner G, Kucherov FA, Ananikov VP. Chem. Asian J. 2016; 11: 965
    • 9k Teong SP, Yu D, Sum YN, Zhang Y. Green Chem. 2016; 18: 3499
    • 9l Rattanangkool E, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S. Eur. J. Org. Chem. 2016; 4347
    • 9m Samzadeh-Kermani A. Synlett 2017; 28: 2126
    • 9n Hosseini A, Pilevar A, Hogan E, Mogwitz B, Schulze AS, Schreiner PR. Org. Biomol. Chem. 2017; 15: 6800
    • 9o Werner G, Rodygin KS, Kostin AA, Gordeev EG, Kashin AS, Ananikov VP. Green Chem. 2017; 19: 3032
    • 9p Rodygin KS, Gyrdymova YV, Zarubaev VV. Mendeleev Commun. 2017; 27: 476
    • 9q Turberg M, Ardila-Fierro KJ, Bolm C, Hernández JG. Angew. Chem. Int. Ed. 2018; 57: 10718
    • 9r Voronin VV, Ledovskaya MS, Gordeev EG, Rodygin KS, Ananikov VP. J. Org. Chem. 2018; 83: 3819
    • 9s Van Beek WE, Gadde K, Tehrani KA. Chem. Eur. J. 2018; 24: 16645
    • 9t Rodygin KS, Vikenteva YA, Ananikov VP. ChemSusChem 2019; 12: 1483
    • 9u Hosseini A, Schreiner PR. Org. Lett. 2019; 21: 3746
  • 10 Gao L, Liu Z, Ma X, Li Z. Org. Lett. 2020; 22: 5246
  • 11 Gao L, Li Z. Org. Chem. Front. 2020; 7: 702
  • 12 Gao L, Li Z. Synlett 2019; 30: 1580
  • 13 Fu R, Li Z. Org. Lett. 2018; 20: 2342
  • 14 Song G, Li Z. Eur. J. Org. Chem. 2018; 1326
  • 15 Lu H, Li Z. Adv. Synth. Catal. 2019; 361: 4474
  • 16 Li Z, He L, Fu R, Song G, Song W, Xie D, Yang J. Tetrahedron 2016; 72: 4321
  • 17 Fu R, Li Z. Eur. J. Org. Chem. 2017; 6648
  • 18 Zhang W, Wu H, Liu Z, Zhong P, Zhang L, Huang X, Cheng J. Chem. Commun. 2006; 4826
  • 19 Chuentragool P, Vongnam K, Rashatasakhon P, Sukwattanasinitt M, Wacharasindhu S. Tetrahedron 2011; 67: 8177
    • 20a Hooshmand SE, Afshari R, Ramon DJ, Varma RS. Green Chem. 2020; 22: 3668
    • 20b Dilauro G, Garcia SM, Tagarelli D, Vitale P, Perna FM, Capriati V. ChemSusChem 2018; 11: 3495
    • 20c Sebest F, Casarrubios L, Rzepa HS, White AJ. P, Díez-González S. Green Chem. 2018; 20: 4023
    • 20d Cicco L, Ríos-Lombardía N, Rodríguez-Álvarez MJ, Morís F, Perna FM, Capriati V, García-Álvarez J, González-Sabín J. Green Chem. 2018; 20: 3468
  • 21 Diarylethynes 2a–r: General Procedure The appropriate aryldiazonium tetrafluoroborate 1 (0.4 mmol), CaC2 (77 mg, 1.2 mmol), Pd(PPh3)4 (23 mg, 0.02 mmol), CuI (8 mg, 0.04 mmol), NaI (180 mg, 1.2 mmol), and H2O (173 mg, 9.6 mmol) in DES (1:2 choline chloride–urea) (4 mL) were stirred at r.t. for 5 h. When the reaction was complete (TLC), H2O (2 mL) and EtOAc (2 mL) were added. The resulting mixture was subjected to ultrasonication for 5 min, then filtered to remove solids. The liquor was extracted with EtOAc (3 × 10 mL), and the extracts were washed with saturated brine (3 × 10 mL). The resulting organic phase was dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, PE–EtOAc). Diphenylethyne (2a) White solid; yield: 29.5 mg (83%); mp 59–61 °C. 1H NMR (600 MHz, CDCl3): δ = 7.53 (dd, J = 8.0, 2.0 Hz, 4H), 7.35–7.33 (m, 6 H). 13C NMR (100 MHz, CDCl3): δ = 131.6, 128.3, 128.2, 123.3, 89.3. HRMS (ESI): m/z [M + H]+ calcd for C14H11: 179.0855; found: 179.0852. Bis(4-ethoxyphenyl)ethyne (2j) Yellow solid; yield: 35.6 mg (67%); mp 163–166 °C. 1H NMR (600 MHz, CDCl3): δ = 7.42 (d, J = 8.8 Hz, 4 H), 6.84 (d, J = 8.7 Hz, 4 H), 4.04 (q, J = 7.0 Hz, 4 H), 1.41 (t, J = 7.0 Hz, 6 H). 13C NMR (150 MHz, CDCl3): δ = 158.7, 132.8, 115.6, 114.5, 87.9, 63.5, 14.7. HRMS (ESI): m/z [M + H]+ calcd for C18H19O2: 267.1380; found: 267.1382.