Synthesis 2020; 52(21): 3111-3128
DOI: 10.1055/s-0040-1707225
short review
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Mediated Photoredox Reactions in the Total Synthesis of Natural Products

Jeferson B. Mateus-Ruiz
,
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, México   Email: acordero@unam.mx
› Author Affiliations
Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (DGAPA-UNAM) for project number IN205318. Consejo Nacional de Ciencia y Tecnología (CONACYT) for project number A1-S-7825 and for a postdoctoral fellowship for J.B.M.-R.
Further Information

Publication History

Received: 06 June 2020

Accepted after revision: 30 June 2020

Publication Date:
18 August 2020 (online)


Abstract

In the last two decades, the field of photoredox catalysis (PRC) has grown impressively with reports of new synthetic methodologies and more efficient versions of known free-radical reactions. The impressive success of visible-light-mediated photoredox catalysis is, in great part, due to its low environmental impact, mild reaction conditions, clean reactions, and inexpensive methodologies. These features have allowed photoredox catalysis to emerge as a powerful tool in the synthesis of natural products; much excellent work was reported between 2011 and 2015. Since 2016, a number of more efficient and impressive total syntheses of natural products featuring photoredox catalysis have been reported. In this review, we summarize the recent synthetic applications of photoredox catalysis in the total synthesis of natural products between 2016 and 2020.

1 Introduction

2 Intermolecular Additions from Functionalized Substrates

2.1 Intermolecular Additions from Alkyl Halides

2.2 Intermolecular Additions from Alcohols and Carboxylic Acids

3 Cyclizations from Functionalized Substrates

3.1 Cyclizations of Carbon-Centered Radicals

3.2 Cyclizations of Nitrogen-Centered Radicals

4 Intramolecular Cyclization from Non-functionalized N–H Bonds

4.1 Type I Radical Cascade

4.2 Type II Radical Cascade

4.3 Type III Radical Cascade

5 Functionalization of Imines and Enamines

6 Cycloadditions

7 Miscellaneous

7.1 Dehalogenation and Reductive Decarboxylation

7.2 Thiyl Radical Promoted Cascade

8 Conclusions and Perspectives

 
  • References

    • 1a Gomberg M. J. Am. Chem. Soc. 1900; 22: 757
    • 1b Kharasch MS, Mayo FR. J. Am. Chem. Soc. 1933; 55: 2468
    • 1c van der Kerk GJ. M, Noltes JG, Luijten JG. A. J. Appl. Chem. 1957; 7: 356
    • 2a Julia M. Acc. Chem. Res. 1971; 4: 386
    • 2b Barton DH. R, McCombie SW. J. J. Chem. Soc., Perkin Trans. 1 1975; 1574
    • 3a Kuivila HG. Synthesis 1970; 490
    • 3b Curran DP. Synthesis 1987; 417
    • 3c Curran DP. Synthesis 1987; 489
    • 3d Neumann WP. Synthesis 1987; 665
    • 3e Jasperse CP, Curran DP, Fevig TL. Chem. Rev. 1991; 91: 1237
    • 3f Bowman WR, Bridge CF, Brookes P. J. Chem. Soc., Perkin Trans. 1 2000; 1
    • 3g Studer A, Amrein S, Curran DP. Synthesis 2002; 835
    • 3h Orita A, Otera J. Tin in Organic Synthesis . In Main Group Metals in Organic Synthesis . Yamamoto H, Oshima K. Wiley-VCH; Weinheim: 2004. Chap. 12, 621
    • 3i Davies AG. J. Chem. Res. 2006; 141
    • 3j Jasch H, Heinrich MR. Tin Hydrides and Functional Group Transformations . In Encyclopedia of Radicals in Chemistry, Biology and Materials, Online. Chatgilialoglu C, Studer A. Wiley; Weinheim: 2012. DOI org/10.1002/9781119953678.rad086

      For reviews on organosilanes in radical chemistry, see:
    • 4a Chatgilialoglu C. Acc. Chem. Res. 1992; 25: 188
    • 4b Chatgilialoglu C. Chem. Rev. 1995; 95: 1229
    • 4c Studer A, Amrein S. Synthesis 2002; 835
    • 4d Chatgilialoglu C. In Organosilanes in Radical Chemistry . Wiley; Hoboken: 2004
    • 4e Chatgilialoglu C. Chem. Eur. J. 2008; 14: 2310
    • 4f Chatgilialoglu C, Lavevée J. Molecules 2012; 17: 527
    • 4g Chatgilialoglu C, Ferreri C, Landais Y, Timokhin VI. Chem. Rev. 2018; 118: 6516
    • 5a Zard SZ. Angew. Chem. Int. Ed. 1997; 36: 672
    • 5b Ollivier C, Bark T, Renaud P. Synthesis 2000; 1598
    • 5c Quiclet-Sire B, Zard SZ. Pure Appl. Chem. 2011; 83: 519
    • 5d Zard SZ. Helv. Chim. Acta 2019; 102: e1900134
    • 5e Quiclet-Sire B, Zard SZ. Sci. China Chem. 2019; 62: 1450

      For selected reviews on photoredox catalysis, see:
    • 6a Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 6b Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 6c Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 6d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 6e Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
    • 6f Agnes RA, Li Z, Correia CR. D, Hammond GB. Org. Biomol. Chem. 2015; 13: 9152
    • 6g Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 6h Staveness D, Bosque I, Stephenson CR. J. Acc. Chem. Res. 2016; 49: 2295
    • 6i Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 6j Teegardin K, Day JI, Chan J, Weaver J. Org. Process Res. Dev. 2016; 20: 1156
    • 6k König B. Eur. J. Org. Chem. 2017; 1979
    • 6l Xie J, Jin H, Hashmi SK. Chem. Soc. Rev. 2017; 46: 5193

      For reviews on the use of rose bengal as organic photocatalyst, see:
    • 8a Miyabe H. Organic Reactions Promoted by Metal-Free Organic Dyes Under Visible Light Irradiation. In Visible-Light Photocatalysis of Carbon-Based Materials. Yao Y. IntechOpen; London: 2018. Chap. 1, 1
    • 8b Sharma S, Sharma A. Org. Biomol. Chem. 2019; 17: 4384
    • 9a Margrey KA, Nicewicz DA. Acc. Chem. Res. 2016; 49: 1997
    • 9b Zilate B, Fischer C, Sparr C. Chem. Commun. 2020; 56: 1767
    • 9c Theodoropoulou MA, Nikitas NF, Kokotos CG. Beilstein J. Org. Chem. 2020; 16: 833
    • 9d Sideri IK, Voutyritsa E, Kokotos CG. Org. Biomol. Chem. 2018; 16: 4596
  • 10 Furst L, Narayanam JM. R, Stephenson CR. J. Angew. Chem. Int. Ed. 2011; 50: 9655

    • For reviews on synthetic applications of photoredox catalysis, see:
    • 11a Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 11b Kärkäs MD, Porco JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 11c Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
    • 11d Nicholls TP, Leonori D, Bissember AC. Nat. Prod. Rep. 2016; 33: 1248
    • 11e Gao S, Qiu Y. Sci. China Chem. 2016; 59: 1093
    • 11f Romero KJ, Galliher MS, Pratt DA, Stephenson CR. J. Chem. Soc. Rev. 2018; 47: 7851
    • 11g Yuan C, Liu B. Org. Chem. Front. 2018; 5: 106
    • 11h Pitre SP, Weires NA, Overman LE. J. Am. Chem. Soc. 2019; 141: 2800
    • 11i Lackner GL, Quasdorf KW, Overman LE. Visible-Light Photocatalysis in the Synthesis of Natural Products . In Visible Light Photocatalysis in Organic Chemistry . Stephenson CR. J, Yoon TP, MacMillan DW. C. Wiley-VCH; Weinheim: 2019. Chap. 9, 283
    • 12a Xue F, Lu H, He L, Li W, Zhang D, Liu X.-Y, Qin Y. J. Org. Chem. 2018; 83: 754
    • 12b Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
    • 13a Cordero-Vargas A, Pérez-Martín I, Quiclet-Sire B, Zard SZ. Org. Biomol. Chem. 2004; 2: 3018
    • 13b Chen W, Guo R, Yang Z, Gong J. J. Org. Chem. 2018; 83: 15524
    • 13c Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
    • 14a Mateus-Ruiz JB, Cordero-Vargas A. J. Org. Chem. 2019; 84: 11848
    • 14b León-Rayo DF, Morales-Chamorro M, Cordero-Vargas A. Eur. J. Org. Chem. 2016; 1739
    • 14c Courant T, Masson G. J. Org. Chem. 2016; 81: 6945
    • 15a Bai Q.-F, Jin C, He J.-Y, Feng G. Org. Lett. 2018; 20: 2172
    • 15b Senaweera S, Cartwright KC, Tunge JA. J. Org. Chem. 2019; 84: 12553
    • 16a Tao DJ, Slutskyy Y, Overman LE. J. Am. Chem. Soc. 2016; 138: 2186
    • 16b Tao DJ, Slutskyy Y, Muuronen M, Le A, Kohler P, Overman LE. J. Am. Chem. Soc. 2018; 140: 3091
    • 17a Müller DS, Untiedt NL, Dieskau AP, Lackner GL, Overman LE. J. Am. Chem. Soc. 2015; 137: 660
    • 17b Slutskyy Y, Jamison CR, Lackner GL, Müller DS, Dieskau AP, Untiedt NL, Overman LE. J. Org. Chem. 2016; 81: 7029
    • 18a Slutskyy Y, Jamison CR, Zhao P, Lee J, Rhee YH, Overman LE. J. Am. Chem. Soc. 2017; 139: 7192
    • 18b Garnsey MR, Slutskyy Y, Jamison CR, Zhao P, Lee J, Rhee YH, Overman LE. J. Org. Chem. 2018; 83: 6958
    • 19a Deng Y, Nguyen MD, Zou Y, Houk KN, Smith AB. Org. Lett. 2019; 21: 1708
    • 19b Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
    • 20a Cannillo A, Schwantje TR, Bégin M, Barabé F, Barriault L. Org. Lett. 2016; 18: 2592
    • 20b Revol G, McCallum T, Morin M, Gagosz F, Barriault L. Angew. Chem. Int. Ed. 2013; 52: 13342
    • 20c McCallum T, Slavko E, Morin M, Barriault L. Eur. J. Org. Chem. 2015; 81
    • 20d Kaldas S, Cannillo A, McCallum T, Barriault L. Org. Lett. 2015; 17: 2864
    • 20e Lai CK, Buckanin RS, Chen SJ, Zimmerman DF, Sher FT, Berchtold GA. J. Org. Chem. 1982; 47: 2364
    • 21a Miloserdov FM, Kirillova MS, Muratore ME, Echavarren AM. J. Am. Chem. Soc. 2018; 140: 5393
    • 21b Yap W.-S, Gan C.-Y, Low Y.-Y, Choo YM, Etoh T, Hayashi M, Komiyama K, Kam T.-S. J. Nat. Prod. 2011; 74: 1309
  • 22 Tong X, Shi B, Liang K, Liu Q, Xia C. Angew. Chem. Int. Ed. 2019; 58: 5443
    • 23a Zhang H, Hay EB, Geib SJ, Curran DP. J. Am. Chem. Soc. 2013; 135: 16610
    • 23b Curran DP, Guthrie DB, Geib SJ. J. Am. Chem. Soc. 2008; 130: 8437

      For selected reviews on nitrogen-centered radicals, see:
    • 24a Dénès F. Heteroatom.Centered Radicals for the Synthesis of Heterocyclic Compounds. In Topics in Heterocyclic Chemistry, Vol. 54. Landais Y. Springer; Switzerland: 2018: 151-230
    • 24b Lei J, Li D, Zhu Q. Free-Radical Synthesis and Functionalization of Heterocycles. In Topics in Heterocyclic Chemistry, Vol. 54. Landais Y. Springer; Switzerland: 2018: 285-320
    • 24c Kärkäs MD. ACS Catal. 2017; 7: 4999
    • 24d Jackman MM, Cai Y, Castle SL. Synthesis 2017; 49: 1785
    • 24e Walton JC. Molecules 2016; 21: 660
    • 24f Zard SZ. Synlett 1996; 1148
    • 25a Allen LJ, Cabrera PJ, Lee M, Sanford MS. J. Am. Chem. Soc. 2014; 136: 5607
    • 25b Hioe J, Šakić D, Vrček V, Zipse H. Org. Biomol. Chem. 2015; 13: 157
    • 25c Davies J, Booth SG, Essafi S, Dryfe RA. W, Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
    • 25d Xiong T, Zhang Q. Chem. Soc. Rev. 2016; 45: 3069
    • 25e Crespin LN. S, Greb A, Blakemore DC, Ley SV. J. Org. Chem. 2017; 82: 13093
    • 25f Jiang H, Studer A. CCS Chem. 2019; 1: 38
    • 26a Wu K, Du Y, Wang T. Org. Lett. 2017; 19: 5669
    • 26b Wu K, Du Y, Wei Z, Wang T. Chem. Commun. 2018; 54: 7443
    • 27a Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
    • 27b Choi GJ, Knowles RR. J. Am. Chem. Soc. 2015; 137: 9226
    • 27c Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
    • 27d Chu JC. K, Rovis T. Nature 2016; 539: 272
    • 27e Hu X.-Q, Qi X, Chen J.-R, Zhao Q.-Q, Wei Q, Lan Y, Xiao W.-J. Nat. Commun. 2016; 7: 11188
    • 28a Wang X, Xia D, Qin W, Zhou R, Zhou X, Zhou Q, Liu W, Dai X, Wang H, Wang S, Tan L, Zhang D, Song H, Liu X.-Y, Qin Y. Chem 2017; 2: 803
    • 28b Zhou Q, Dai X, Song H, He H, Wang X, Liu X.-Y, Qin Y. Chem. Commun. 2018; 54: 9510
    • 28c Li W, Chen Z, Yu D, Peng X, Wen G, Wang S, Xue F, Liu X.-Y, Qin Y. Angew. Chem. Int. Ed. 2019; 58: 6059
    • 28d Liu W, Qin W, Wang X, Xue F, Liu X.-Y, Qin Y. Angew. Chem. Int. Ed. 2018; 57: 12299
    • 28e He L, Wang X, Wu X, Meng Z, Peng X, Liu X.-Y, Qin Y. Org. Lett. 2019; 21: 252
    • 28f Wu P, Zhou Q, Liu X.-Y, Xue F, Qin Y. Chin. Chem. Lett. 2020; DOI: in press; 10.1016/j.cclet.2020.02.009.
  • 29 Liu X.-Y, Qin Y. Acc. Chem. Res. 2019; 52: 1877
  • 30 Vatsadze SZ, Loginova YD, dos Passos Gomes G, Alabugin IV. Chem. Eur. J. 2017; 23: 3225
    • 31a Rueping M, Zhu S, Koenings RM. Chem. Commun. 2011; 47: 12709
    • 31b Franz JF, Kraus WB, Zeitler K. Chem. Commun. 2015; 51: 8280
    • 31c Freeman DB, Furst L, Condie AG, Stephenson CR. J. Org. Lett. 2012; 14: 94
  • 32 Orejarena-Pacheco JC, Lipp A, Nauth AM, Acke F, Dietz J.-P, Opatz T. Chem. Eur. J. 2016; 22: 5409
    • 33a Gentry EC, Rono LJ, Hale ME, Matsura R, Knowles RR. J. Am. Chem. Soc. 2018; 140: 3394
    • 33b Zhu Q, Gentry EC, Knowles RR. Angew. Chem. Int. Ed. 2016; 55: 9969
  • 34 Liang K, Tong X, Li T, Shi B, Wang H, Yan P, Xia C. J. Org. Chem. 2018; 83: 10948
    • 35a Reich D, Trowbridge T, Gaunt MJ. Angew. Chem. Int. Ed. 2020; 59: 2256
    • 35b Trowbridge T, Reich D, Gaunt MJ. Nature 2018; 561: 522
    • 36a Ciamician G, Silber P. Ber. Dtsch. Chem. Ges. 1909; 42: 1386
    • 36b Paternò E, Chieffi G. Gazz. Chim. Ital. 1909; 39: 341
    • 36c Büchi G, Inman CG, Lipinsky ES. J. Am. Chem. Soc. 1954; 76: 4327
  • 38 Hart JD, Burchill L, Day AJ, Newton CG, Sumby CJ, Huang DM, George JH. Angew. Chem. Int. Ed. 2019; 58: 2791
  • 39 Gesmundo NJ, Nicewicz DA. Beilstein J. Org. Chem. 2014; 10: 1272
    • 40a Martinez-Haya R, Marzo L, König B. Chem. Commun. 2018; 54: 11602
    • 40b De Mayo P, Takashita H, Satter AB. M. A. Proc. Chem. Soc. 1962; 119
    • 40c De Mayo P, Takashita H. Can. J. Chem. 1963; 41: 440
    • 40d Kornis G, De Mayo P. Can. J. Chem. 1964; 42: 2822
  • 41 Gu J.-H, Wang W.-J, Chen J.-Z, Liu J.-S, Li N.-P, Cheng M.-J, Hu L.-J, Li C.-C, Ye W.-C, Wang L. Org. Lett. 2020; 22: 1796
  • 42 Zhang H, Liu P.-F, Chen Q, Wu Q.-Y, Seville A, Gu Y.-C, Clough J, Zhou S.-L, Yang GF. Org. Biomol. Chem. 2016; 14: 3482
  • 43 Rodríguez-Tzompanzi V, Quintero L, Tepox-Luna DM, Cruz-Gregorio S, Sartillo-Piscil F. Tetrahedron Lett. 2019; 60: 423
    • 44a Bowry V, Lusztyk J, Ingold KU. J. Am. Chem. Soc. 1991; 113: 5687
    • 44b Horner JH, Tanaka N, Newcomb M. J. Am. Chem. Soc. 1998; 120: 10379
    • 44c Furxhi E, Horner JH, Newcomb M. J. Org. Chem. 1999; 64: 4064
    • 45a Miura K, Fugami K, Oshima K, Utimoto K. Tetrahedron Lett. 1988; 29: 1543
    • 45b Miura K, Fugami K, Oshima K, Utimoto K. Tetrahedron Lett. 1988; 29: 5135
    • 45c Miyata O, Ozawa Y, Ninomiya I, Naito T. Synlett 1997; 275
    • 45d Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
    • 46a Zhang P.-P, Yan Z.-M, Li Y.-H, Gong J.-X, Yang Z. J. Am. Chem. Soc. 2017; 139: 13989
    • 46b Zhang P, Li Y, Yan Z, Gong J, Yang Z. J. Org. Chem. 2019; 84: 15958