Synlett
DOI: 10.1055/s-0040-1707231
account
© Georg Thieme Verlag Stuttgart · New York

Sulfur-Chelated Ruthenium Olefin Metathesis Catalysts

Noy B. Nechmad
a  Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel   eMail: Lemcoff@bgu.ac.il
,
a  Department of Chemistry, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel   eMail: Lemcoff@bgu.ac.il
b  Ilse Katz Institute for Nanotechnology Science, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
› Institutsangaben
This research was funded by the Israel Science Foundation (Grant Number 506/18).
Weitere Informationen

Publikationsverlauf

Received: 25. Juni 2020

Accepted after revision: 04. Juli 2020

Publikationsdatum:
07. August 2020 (online)


Abstract

This Account summarizes the historical development of latent sulfur-chelated ruthenium precatalysts from the Lemcoff group’s perspective. The most unique feature of this family of complexes is that they appear in the more stable cis-dichloro configuration, which is latent towards olefin metathesis reactions. Activation of the precatalyst, brought about by isomerization from the cis-dihalo to the trans-dihalo forms, can be achieved either by thermal or light stimuli. Modifications of the ligand sphere bestows unique properties upon the catalysts, which have been used in diverse applications, from 3D printing of metathesis polymers to orthogonally divergent synthetic pathways.

1 Introduction

2 Effect of Sulfur Substituents

3 Effect of Benzylidene Ligands

4 Effect of the NHC Ligands

5 Effect of the Anionic Ligands

6 Conclusions

 
  • References

    • 1a Trnka TM, Grubbs RH. Acc. Chem. Res. 2001; 34: 18
    • 1b Cavallo L. J. Am. Chem. Soc. 2002; 124: 8965
    • 1c Vidavsky Y, Anaby A, Lemcoff NG. Dalton Trans. 2012; 41: 32
  • 2 Ben-Asuly A, Tzur E, Diesendruck CE, Sigalov M, Goldberg I, Lemcoff NG. Organometallics 2008; 27: 811
  • 3 Ben-Asuly A, Aharoni A, Diesendruck CE, Vidavsky Y, Goldberg I, Straub BF, Lemcoff NG. Organometallics 2009; 28: 4652
  • 4 Kost T, Sigalov M, Goldberg I, Ben-Asuly A, Lemcoff NG. J. Organomet. Chem. 2008; 693: 2200
  • 5 Ginzburg Y, Anaby A, Vidavsky Y, Diesendruck CE, Ben-Asuly A, Goldberg I, Lemcoff NG. Organometallics 2011; 30: 3430
  • 6 Diesendruck CE, Vidavsky Y, Ben-Asuly A, Lemcoff NG. J. Polym. Sci., Part A: Polym. Chem. 2009; 47: 4209
  • 7 Alessio E, Mestroni G, Nardin G, Attia WM, Calligaris M, Sava G, Zorzet S. Inorg. Chem. 1988; 27: 4099
  • 8 Segalovich-Gerendash G, Rozenberg I, Alassad N, Nechmad NB, Goldberg I, Kozuch S, Lemcoff NG. ACS Catal. 2020; 10: 4827
  • 9 Aharoni A, Vidavsky Y, Diesendruck CE, Ben-Asuly A, Goldberg I, Lemcoff NG. Organometallics 2011; 30: 1607
  • 10 Tzur E, Szadkowska A, Ben-Asuly A, Makal A, Goldberg I, Wozniak K, Grela K, Lemcoff NG. Chem. Eur. J. 2010; 16: 8726
  • 11 Tzur E, Ivry E, Diesendruck CE, Vidavsky Y, Goldberg I, Lemcoff NG. J. Organomet. Chem. 2014; 769: 24
  • 12 Mavila S, Lemcoff NG. In N-Heterocyclic Carbenes . Nolan PS. Wiley-VCH; Weinheim: 2014: 307
    • 13a Fürstner A, Ackermann L, Gabor B, Goddard R, Lehmann CW, Mynott R, Stelzer F, Thiel OR. Chem. Eur. J. 2001; 7: 3236
    • 13b Stewart IC, Ung T, Pletnev AA, Berlin JM, Grubbs RH, Schrodi Y. Org. Lett. 2007; 9: 1589
  • 14 Lavallo V, Canac Y, Präsang C, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2005; 44: 5705
  • 15 Levin E, Mavila S, Eivgi O, Tzur E, Lemcoff NG. Angew. Chem. Int. Ed. 2015; 54: 12384
  • 16 Sutar RL, Levin E, Butilkov D, Goldberg I, Reany O, Lemcoff NG. Angew. Chem. Int. Ed. 2016; 55: 764
  • 17 Ivry E, Frenklah A, Ginzburg Y, Levin E, Goldberg I, Kozuch S, Lemcoff NG, Tzur E. Organometallics 2018; 37: 176
    • 18a Samojłowicz C, Bieniek M, Grela K. Chem. Rev. 2009; 109: 3708
    • 18b Vougioukalakis GC, Grubbs RH. Chem. Rev. 2010; 110: 1746
  • 19 Gawin R, Kozakiewicz A, Guńka PA, Dąbrowski P, Skowerski K. Angew. Chem. Int. Ed. 2017; 56: 981
    • 20a Marsella MJ, Maynard HD, Grubbs RH. Angew. Chem., Int. Ed. Engl. 1997; 36: 1101
    • 20b Fürstner A, Thiel OR, Ackermann L, Schanz H.-J, Nolan SP. J. Org. Chem. 2000; 65: 2204
    • 20c Sworen JC, Pawlow JH, Case W, Lever J, Wagener KB. J. Mol. Catal. A: Chem. 2003; 194: 69
    • 20d Schmidt B, Hauke S, Mühlenberg N. Synthesis 2014; 46: 1648
    • 20e Butilkov D, Lemcoff NG. Green Chem. 2014; 16: 4728
  • 21 Rozenberg I, Eivgi O, Frenklah A, Kozuch S, Butilkov D, Kozuch S, Lemcoff NG. ACS Catal. 2018; 8: 8182
    • 22a Tanaka K, Böhm VP. W, Chadwick D, Roeper M, Braddock DC. Organometallics 2006; 25: 5696
    • 22b Wappel J, Urbina-Blanco CA, Abbas M, Albering JH, Saf R, Nolan SP, Slugovc C. Beilstein J. Org. Chem. 2010; 6: 1091
    • 22c Buchmeiser MR, Anderson EB. Synlett 2012; 185
    • 22d Torker S, Kashif R, Khan M, Hoveyda AH. J. Am. Chem. Soc. 2014; 136: 3439
    • 22e Fustero S, Simón-Fuentes A, Barrio P, Haufe G. Chem. Rev. 2015; 115: 871
    • 22f Tracz A, Matczak M, Urbaniak K, Skowerski K. Beilstein J. Org. Chem. 2015; 11: 1823
    • 22g Wyrębek P, Małecki P, Sytniczuk A, Kośnik W, Gawin A, Kostrzewa J, Kajetanowicz A, Grela K. ACS Omega 2018; 3: 18481
    • 23a Fagnou K, Lautens M. Angew. Chem. Int. Ed. 2002; 41: 26
    • 23b Pump E, Fischer RC, Slugovc C. Organometallics 2012; 31: 6972
    • 23c Guidone S, Songis O, Falivene L, Nahra F, Slawin AM. Z, Jacobsen H, Cavallo L, Cazin CS. J. ACS Catal. 2015; 5: 3932
  • 24 Ivry E, Nechmad NB, Baranov M, Goldberg I, Lemcoff NG. Inorg. Chem. 2018; 57: 15592
  • 25 Nechmad NB, Phatake R, Ivry I, Poater A, Lemcoff NG. Angew. Chem. Int. Ed. 2020; 9: 3539