Synthesis
DOI: 10.1055/s-0040-1707345
feature
© Georg Thieme Verlag Stuttgart · New York

1,3-Diphenyldisiloxane Enables Additive-Free Redox Recycling Reactions and Catalysis with Triphenylphosphine

Joseph A. Buonomo
,
Malcolm S. Cole
,
Carter G. Eiden
,
Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA   Email: aldri015@umn.edu
› Author Affiliations
Further Information

Publication History

Received: 17 February 2020

Accepted after revision: 30 June 2020

Publication Date:
04 August 2020 (online)


Abstract

The recently reported chemoselective reduction of phosphine oxides with 1,3-diphenyldisiloxane (DPDS) has opened up the possibility of additive-free phosphine oxide reductions in catalytic systems. Herein we disclose the use of this new reducing agent as an enabler of phosphorus redox recycling in Wittig, Staudinger, and alcohol substitution reactions. DPDS was successfully utilized in ambient-temperature additive-free redox recycling variants of the Wittig olefination, Appel halogenation, and Staudinger reduction. Triphenylphosphine-promoted catalytic recycling reactions were also facilitated by DPDS. Additive-free triphenylphosphine-promoted catalytic Staudinger reductions could even be performed at ambient temperature due to the rapid nature of phosphinimine reduction, for which we characterized kinetic and thermodynamic parameters. These results demonstrate the utility of DPDS as an excellent reducing agent for the development of phosphorus redox recycling reactions.

Supporting Information

 
  • References

    • 1a Wittig G, Geissler G. Liebigs Ann. Chem. 1953; 580: 44
    • 1b Wittig G, Schollkopf U. Chem. Ber. 1954; 87: 1318
    • 2a Mitsunobu O, Yamada M, Mukaiyama T. Bull. Chem. Soc. Jpn. 1967; 40: 935
    • 2b Mitsunobu O, Yamada M. Bull. Chem. Soc. Jpn. 1967; 40: 2380
  • 3 Staudinger H, Meyer J. Helv. Chim. Acta 1919; 2: 635
    • 4a Downie I, Holmes J, Lee J. Chem. Ind. 1966; 22: 900
    • 4b Appel R. Angew. Chem. Int. Ed. 1975; 14: 801
    • 5a Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL. Jr, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells AS, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
    • 5b Bryan MC, Dunn PJ, Entwistle D, Gallou F, Koenig SG, Hayler JD, Hickey MR, Hughes S, Kopach ME, Moine G, Richardson P, Roschangar F, Steven A, Weiberth FJ. Green Chem. 2018; 20: 5082
    • 5c van Kalkeren HA, Blom AL, Rutjes FP. J. T, Huijbregts MA. J. Green Chem. 2013; 15: 1255
    • 5d Beddoe RH, Sneddon HF, Denton RM. Org. Biomol. Chem. 2018; 16: 7774
    • 6a O’Brien CJ, Tellez JL, Nixon ZS, Kang LJ, Przeworski KC, Chass GA. Angew. Chem. Int. Ed. 2009; 48: 6836
    • 6b O’Brien CJ, Nixon ZS, Holohan AJ, Kunkel SR, Tellez JL, Doonan BJ, Coyle EE, Lavigne F, Kang LJ, Przeworski KC. Chem. Eur. J. 2013; 19: 15281
    • 6c Schirmer M.-L, Adomeit S, Werner T. Org. Lett. 2015; 17: 3078
    • 6d Zhang K, Cai L, Yang Z, Houk KN, Kwon O. Chem. Sci. 2018; 9: 1867
  • 7 Buonomo JA, Aldrich CC. Angew. Chem. Int. Ed. 2015; 54: 13041
    • 8a van Kalkeren HA, Bruins JJ, Rutjes FP. J. T, van Delft FL. Adv. Synth. Catal. 2012; 354: 1417
    • 8b van Kalkeren HA, te Grotenhuis C, Haasjes FS, Hommersom CR. A, Rutjes FP. J. T, van Delft FL. Eur. J. Org. Chem. 2013; 7059
    • 8c Kosal AD, Wilson EE, Ashfeld BL. Angew. Chem. Int. Ed. 2012; 51: 12036
  • 9 van Kalkeren HA, Leenders SH. A. M, Hommersom CR. A, Rutjes FP. J. T, van Delft FL. Chem. Eur. J. 2011; 17: 11290
    • 10a Zhao W, Yan PK, Radosevich AT. J. Am. Chem. Soc. 2015; 137: 616
    • 10b Fourmy K, Voituriez A. Org. Lett. 2015; 17: 1537
    • 10c Han X, Saleh N, Retailleau P, Voituriez A. Org. Lett. 2018; 20: 4584
    • 10d Nykaza TV, Cooper JC, Li G, Mahieu N, Ramirez A, Luzung MR, Radosevich AT. J. Am. Chem. Soc. 2018; 140: 15200
  • 11 O’Brien CJ, Lavigne F, Coyle EE, Holohan AJ, Doonan BJ. Chem. Eur. J. 2013; 19: 5854
  • 12 Li Y, Lu L.-Q, Das S, Pisiewicz S, Junge K, Beller M. J. Am. Chem. Soc. 2012; 134: 18325
    • 13a Lenstra DC, Rutjes FP. J. T, Mecinovic J. Chem. Commun. 2014; 50: 5763
    • 13b Hamstra DF. J, Lenstra DC, Koenders TJ, Rutjes FP. J. T, Mencinovic J. Org. Biomol. Chem. 2017; 15: 6426
  • 14 Buonomo JA, Eiden CG, Aldrich CC. Chem. Eur. J. 2017; 23: 14434
  • 15 Buonomo JA, Eiden CG, Aldrich CC. Synthesis 2018; 50: 278
  • 16 Marinetti A, Carmichael D. Chem. Rev. 2002; 102: 201
  • 17 Coyle EE, Doonan BJ, Holohan AJ, Walsh KA, Lavigne F, Krenske EH, O’Brien CJ. Angew. Chem. Int. Ed. 2014; 53: 12907
  • 18 Hirose D, Gazvoda M, Kosmrlj J, Taniguchi T. Org. Lett. 2016; 18: 4036
  • 19 Hughes DL, Reamer RA, Bergan JJ, Grabowski EJ. J. J. Am. Chem. Soc. 1988; 110: 6487
    • 20a Campbell TW, Monagle JJ, Foldi VS. J. Am. Chem. Soc. 1962; 84: 3673
    • 20b Marsden SP, McGonagle AE, McKeever-Abbas B. Org. Lett. 2008; 10: 2589
    • 20c Denton RM, An J, Adeniran B. Chem. Commun. 2010; 46: 3025
    • 20d Denton RM, An J, Adeniran B, Blake AJ, Lewis W, Poulton AM. J. Org. Chem. 2011; 76: 6749
    • 20e Tang X, Chapman C, Whiting M, Denton RM. Chem. Commun. 2014; 50: 7340
    • 20f Beddoe RH, Andrews KG, Magne V, Cuthbertson JD, Saska J, Shannon-Little AL, Shanahan SE, Sneddon HF, Denton RM. Science 2019; 365: 910
  • 21 Lenstra DC, Lenting PE, Mecinovic J. Green Chem. 2018; 20: 4418
  • 22 Lenstra DC, Wolf JJ, Mecinovic J. J. Org. Chem. 2019; 84: 6536
  • 23 Iranpoor N, Firouzabadi H, Riazi A, Pedrood K. J. Organomet. Chem. 2016; 822: 67
  • 24 Wang Y, Du G, Gu C, Xing F, Dai B, He L. Tetrahedron 2016; 72: 472
  • 25 Yamakawa T, Kinoshita H, Miura K. J. Organomet. Chem. 2013; 724: 129
  • 26 Concellon JM, Bardales E. Org. Lett. 2002; 4: 189
  • 27 Puthiaraj P, Pichumani K. Green Chem. 2014; 16: 4223
  • 28 China Raju B, Suman P. Chem. Eur. J. 2010; 16: 11840
  • 29 Paizc C, Katona A, Retey J. Chem. Eur. J. 2006; 12: 2739
  • 30 Zhao W, Xu L, Ding Y, Niu B, Xie P, Bian Z, Zhang D, Zhou A. Eur. J. Org. Chem. 2016; 325
  • 31 Rokade BV, Prabhu KR. J. Org. Chem. 2012; 77: 5364
  • 32 Abe M, Nishikawa K, Fukuda H, Nakanishi K, Tazawa Y, Taniguchi T, Park S-Y, Hiradate S, Fuji Y, Okuda K, Shindo M. Phytochemistry 2012; 84: 56
  • 33 van Dyke Tiers G. Magn. Reson. Chem. 1999; 37: 609
  • 34 Nguyen TV, Bekensir A. Org. Lett. 2014; 16: 1720
  • 35 Roper KA, Lange H, Polyzos A, Berry MB, Baxendale IR, Ley SV. Beilstein J. Org. Chem. 2011; 7: 1648
  • 36 Bartoli G, DiAntonio G, Giovannini R, Giuli S, Lanari S, Paoletti M, Marcantoni E. J. Org. Chem. 2008; 73: 1919
  • 37 Reina A, Favier I, Pradel C, Gomez M. Adv. Synth. Catal. 2018; 360: 3544
  • 38 Lu H, Geng Z, Li J, Zou D, Wu Y, Wu Y. Org. Lett. 2016; 18: 2774
  • 39 Higuchi T, Tagawa R, Iimuro A, Akiyama S, Nagae H, Mashima K. Chem. Eur. J. 2017; 23: 12795
  • 40 Kerr WG, Chisholm JD. WO2011/127465 A2, 2011
  • 41 Perault WR, Pearlman BA, Godrej DB, Jeganathan A, Yamagatam K, Chen JJ, Lu CV, Herrinton PM, Gadwood RC, Chan L, Lyster MA, Maloney MT, Moeslein JA, Greene ML, Barbachyn MR. Org. Process Res. Dev. 2003; 7: 533