Synthesis 2020; 52(18): 2667-2678
DOI: 10.1055/s-0040-1707393
paper
© Georg Thieme Verlag Stuttgart · New York

Divergent Synthesis of Five-Membered Nitrogen Heterocycles via Cascade Reactions of 4-Arylfuroxans

Daniil A. Chaplygin
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Leninsky prosp., 47, Moscow, Russian Federation   Email: fershtat@bk.ru
,
Ivan V. Ananyev
b   A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Vavilova str., 28, Moscow, Russian Federation
c   National Research University Higher School of Economics, 101000, Moscow, Russian Federation
,
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Leninsky prosp., 47, Moscow, Russian Federation   Email: fershtat@bk.ru
,
Nina N. Makhova
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Leninsky prosp., 47, Moscow, Russian Federation   Email: fershtat@bk.ru
› Author Affiliations
This work was supported by the Russian Foundation for Basic Research (grant 18-03-00332). The structure analysis and DFT calculations were supported by the Russian Science Foundation (project 18-73-10131).
Further Information

Publication History

Received: 17 March 2020

Accepted after revision: 07 April 2020

Publication Date:
05 May 2020 (online)


Abstract

A novel method for the synthesis of a diverse series of functionally substituted five-membered heterocyclic compounds via atom-economic, regio-, and diastereoselective one-pot reaction cascade was developed. This approach involves a ring opening in 4-arylfuroxans to α-oximinoarylacetonitrile oxides followed by [3+2] cycloaddition to various dipolarophiles to afford multisubstituted isoxazoles and isoxazolines. Subsequent azole–azole rearrangement of (oximino)isoxazolines/-isoxazoles, which can be conducted in a one-pot manner, results into functionally substituted furazans formation. The developed protocol is operationally simple, proceeds in mild conditions and with high yields of target heterocyclic systems. Overall, this study represents a new mode of isoxazole and 1,2,5-oxadiazole functionalization strategy, which is useful in medicinal and materials chemistry.

Supporting Information

 
  • References

    • 1a Smith JM, Dixon JA, deGruyter JN, Baran PS. J. Med. Chem. 2019; 62: 2256
    • 1b Krska SW, DiRocco DA, Dreher SD, Shevlin M. Acc. Chem. Res. 2017; 50: 2976
    • 1c Liu Y.-J, Xu H, Kong W.-J, Shang M, Dai H.-X, Yu J.-Q. Nature 2014; 515: 389
    • 1d Hansen EC, Pedro DJ, Wotal AC, Gower NJ, Nelson JD, Caron S, Weix DJ. Nat. Chem. 2016; 8: 1126
    • 1e Hilton MC, Zhang X, Boyle BT, Alegre-Requena JV, Paton RS, McNally A. Science 2018; 362 6416, 799
    • 2a Das P, Delost MD, Qureshi MH, Smith DT, Njardarson JT. J. Med. Chem. 2019; 62: 4265
    • 2b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257

      For recent examples, see:
    • 3a Kawamata Y, Vantourout JC, Hickey DP, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards MA, Garrido-Castro AF, deGruyter JN, Nakamura H, Knouse K, Qin C, Clay KJ, Bao D, Li C, Starr JT, Garcia-Irizarry C, Sach N, White HS, Neurock M, Minteer SD, Baran PS. J. Am. Chem. Soc. 2019; 141: 6392
    • 3b Zhang X, McNally A. ACS Catal. 2019; 9: 4862
    • 3c Boddy AJ, Affron DP, Cordier CJ, Rivers EL, Spivey AC, Bull JA. Angew. Chem. Int. Ed. 2019; 58: 1458
    • 3d Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 3e Nicolaou KC, Hale CR. H, Nilewski C, Ioannidou HA. Chem. Soc. Rev. 2012; 41: 5185
    • 4a Naidu KM, Suresh A, Subbalakshmi J, Sriram D, Yogeeswari P, Raghavaiah P, Sekhar KV. C. Eur. J. Med. Chem. 2014; 87: 71
    • 4b Sun J, Lin C, Qin X, Dong X, Tu Z, Tang F, Chen C, Zhang J. Bioorg. Med. Chem. Lett. 2015; 25: 3129
    • 4c Perrone MG, Vitale P, Panella A, Fortuna CG, Scilimati A. Eur. J. Med. Chem. 2015; 94: 252
    • 5a Dallanoce C, Magrone P, Matera C, Frigerio F, Grazioso G, DeAmici M, Fucile S, Piccari V, Frydenvang K, Pucci L, Gotti C, Clementi F, DeMicheli C. ChemMedChem 2011; 6: 889
    • 5b Soni A, Rehman A, Naik K, Dastidar S, Alam MS, Ray A, Chaira T, Shah V, Palle VP, Cliffe IA, Sattigeri VJ. Bioorg. Med. Chem. Lett. 2013; 23: 1482
    • 5c Kaur K, Kumar V, Sharma AK, Gupta GK. Eur. J. Med. Chem. 2014; 77: 121

      For reviews, see:
    • 6a Paton RM. 1,2,5-Oxadiazoles . In Comprehensive Heterocyclic Chemistry II, Vol. 4. Katritzky AR, Rees CW, Scriven EF. V. Pergamon; Oxford: 1996: 229-266
    • 6b Nikonov GN, Bobrov S. 1,2,5-Oxadiazoles . In Comprehensive Heterocyclic Chemistry III, Vol. 5. Katritzky AR, Ramsden CA. V, Scriven EF. V, Taylor RJ. K. Elsevier; Amsterdam: 2008: 316-393
    • 6c Fershtat LL, Makhova NN. Russ. Chem. Rev. 2016; 85: 1097
    • 6d Zlotin SG, Dalinger IL, Makhova NN, Tartakovsky VA. Russ. Chem. Rev. 2020; 89: 1
    • 6e Makhova NN, Belen’kii LI, Gazieva GA, Dalinger IL, Konstantinova LS, Kuznetsov VV, Kravchenko AN, Krayushkin MM, Rakitin OA, Starosotnikov AM, Fershtat LL, Shevelev SA, Shirinian VZ, Yarovenko VN. Russ. Chem. Rev. 2020; 89: 55
    • 7a Zhao J, Li Y, Hunt A, Zhang J, Yao H, Li Z, Zhang J, Huang F, Ade H, Yan H. Adv. Mater. 2016; 28: 1868
    • 7b Cameron J, Abed MM, Chapman SJ, Findlay NJ, Skabara PJ, Horton PN, Coles SJ. J. Mater. Chem. C 2018; 6: 3709

      For selected examples, see:
    • 8a Stepanov AI, Astrat’ev AA, Sheremetev AB, Lagutina NK, Palysaeva NV, Tyurin AY, Aleksandrova NS, Sadchikova NP, Suponitsky KYu, Atamanenko OP, Konyushkin LD, Semenov RV, Firgang SI, Kiselyov AS, Semenova MN, Semenov VV. Eur. J. Med. Chem. 2015; 94: 237
    • 8b Pal P, Gandhi HP, Kanhed AM, Patel NR, Mankadia NN, Baldha SN, Barmade MA, Murumkar PR, Yadav MR. Eur. J. Med. Chem. 2017; 130: 107
    • 8c Porta F, Gelain A, Barlocco D, Ferri N, Marchianò S, Cappello V, Basile L, Guccione S, Meneghetti F, Villa S. Chem. Biol. Drug Des. 2017; 90: 820
  • 9 Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S, Carfrae LA, Bloom-Ackerman Z, Tran VM, Chiappino-Pepe A, Badran AH, Andrews IW, Chory EJ. Church G. M, Brown ED, Jaakkola TS, Barzilay R, Collins JJ. Cell 2020; 180: 688

    • For selected examples, see:
    • 10a Zhang Q, Shreeve JM. Chem. Rev. 2014; 114: 10527
    • 10b Zhang J, Shreeve JM. J. Am. Chem. Soc. 2014; 136: 4437
    • 10c Palysaeva NV, Gladyshkin AG, Vatsadze IA, Suponitsky KYu, Dmitriev DE, Sheremetev AB. Org. Chem. Front. 2019; 6: 249
    • 10d Wei H, He C, Zhang J, Shreeve JM. Angew. Chem. Int. Ed. 2015; 54: 9367
    • 10e Zhang J, Mitchell LA, Parrish DA, Shreeve JM. J. Am. Chem. Soc. 2015; 137: 10532
    • 10f Fershtat LL, Makhova NN. ChemPlusChem 2020; 85: 13
    • 10g Sun Q, Shen C, Li X, Lin Q, Lu M. J. Mater. Chem. A 2017; 5: 11063
    • 10h He C, Imler GH, Parrish DA, Shreeve JM. J. Mater. Chem. A 2018; 6: 16833
  • 11 Kesornpun C, Aree T, Mahidol C, Ruchirawat S, Kittakoop P. Angew. Chem. Int. Ed. 2016; 55: 3997
  • 12 Larin AA, Fershtat LL, Ananyev IV, Makhova NN. Tetrahedron Lett. 2017; 58: 3993
    • 13a Padwa A, Bur S. Adv. Heterocycl. Chem. 2016; 119: 241
    • 13b Rosenau T, Adelwӧhrer C, Hofinger A, Mereiter K, Kosma P. Eur. J. Org. Chem. 2004; 1323
    • 13c Trogu E, de Sarlo F, Machetti F. Chem. Eur. J. 2009; 15: 7940
    • 13d Maestri G, Caneque T, Della Ca’ N, Derat E, Catellani M, Chiusoli GP, Malacria M. Org. Lett. 2016; 18: 6108

      For selected examples, see:
    • 14a Nicolaides DN, Gallos JK. Synthesis 1981; 638
    • 14b Olofson RA, Michelman JS. J. Am. Chem. Soc. 1964; 86: 1863
    • 14c Shaposhnikov SD, Pirogov SV, Mel’nikova SF, Tselinsky IV, Näther C, Graening T, Traulsen T, Friedrichsen W. Tetrahedron 2003; 59: 1059
  • 15 Boulton AJ, Katritzky AR, Majid-Hamid A. J. Chem. Soc. C 1967; 2005

    • For reviews, see:
    • 16a Ruccia M, Vivona N, Spinelli D. Adv. Heterocycl. Chem. 1981; 29: 141
    • 16b Vivona N, Buscemi S, Frenna V, Cusmano G. Adv. Heterocycl. Chem. 1993; 56: 49

      For reviews, see:
    • 17a Boulton AJ, Ghosh PB. Adv. Heterocycl. Chem. 1969; 10: 1
    • 17b Katritzky AR, Gordeev MF. Heterocycles 1993; 35: 483
  • 18 Burakevich JV, Butler RS, Volpp GP. J. Org. Chem. 1972; 37: 593
  • 19 Wieland H. Justus Liebigs Ann. Chem. 1921; 424: 107
  • 20 Bruker. APEX-III . Bruker AXS Inc; Madison (WI, USA): 2018
  • 21 Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D. J. Appl. Crystallogr. 2015; 48: 3
  • 22 Sheldrick GM. Acta Crystallogr., Sect. A 2015; 71: 3
  • 23 Sheldrick GM. Acta Crystallogr., Sect. C 2015; 71: 3
  • 24 CCDC 1982203 (3c) and 1982204 (4a) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 25 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 09, Revision D.01 . Gaussian, Inc; Wallingford: 2016
  • 26 Perdew J, Ernzerhof M, Burke K. J. Chem. Phys. 1996; 105: 9982
  • 27 Carlo A, Barone V. J. Chem. Phys. 1999; 110: 6158
  • 28 Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011; 32: 1456
  • 29 Vivona N, Macaluso G, Frenna V. J. Chem. Soc., Perkin Trans. 1 1983; 483
  • 30 Eaton JK, Ruberto RA, Kramm A, Viswanathan VS, Schreiber SL. J. Am. Chem. Soc. 2019; 141: 20407