Synthesis 2020; 52(19): 2807-2820
DOI: 10.1055/s-0040-1707885
short review
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed anti-Selective Alkyne Functionalization Reactions

Sydney E. Bottcher
,
Lauren E. Hutchinson
,
Samford University, Department of Chemistry and Biochemistry, 800 Lakeshore Dr., Birmingham, AL 35229, USA   eMail: dwilger@samford.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 30. März 2020

Accepted after revision: 19. Mai 2020

Publikationsdatum:
22. Juni 2020 (online)


Abstract

Nickel-catalyzed anti-selective alkyne functionalization reactions are reviewed with an emphasis on the mechanisms that lead to their observed stereoselectivity. Since the isomerization of alkenylnickel species plays a key role in a large number of these reactions, the potential mechanisms for these processes are also described in detail.

1 Introduction

2 anti-Selective Hydroarylation

3 anti-Selective Carboborylation

4 anti-Selective Dicarbofunctionalization

4.1 Carbocyanative Cyclization

4.2 Cyclization with Aryl Donors

4.3 Cyclization with CO2

4.4 Intermolecular Dicarbofunctionalization

5 anti-Selective Carbosulfonylation

6 Alkenylnickel Isomerization

7 Conclusions

 
  • References


    • For reviews concerning alkyne hydroarylation, see:
    • 1a Nevado C, Echavarren AM. Synthesis 2005; 167
    • 1b de Haro T, Nevado C. Comprehensive Organic Synthesis, 2nd ed. Knochel P. Elsevier; Amsterdam: 2014: 1621
    • 1c Boyarskiy VP, Ryabukhin DS, Bokach NA, Vasilyev AV. Chem. Rev. 2016; 116: 5894
  • 2 Murakami K, Ohmiya H, Yorimitsu H, Oshima K. Org. Lett. 2007; 9: 1569
  • 3 Yorimitsu H, Tang J, Okada K, Shinokubo H, Oshima K. Chem. Lett. 1998; 27: 11
  • 4 Shirakawa E, Masui S, Narui R, Watabe R, Ikeda D, Hayashi T. Chem. Commun. 2011; 47: 9714
  • 5 Murakami K, Yorimitsu H, Oshima K. Org. Lett. 2009; 11: 2373
  • 6 Stüdemann T, Knochel P. Angew. Chem., Int. Ed. Engl. 1997; 36: 93
  • 7 Xie M, Huang X. Synlett 2003; 477
  • 8 Lautens M, Yoshida M. Org. Lett. 2002; 4: 123
    • 9a Oh CH, Jung HH, Kim KS, Kim N. Angew. Chem. Int. Ed. 2003; 42: 805
    • 9b Kim N, Kim KS, Gupta AK, Oh CH. Chem. Commun. 2004; 618
    • 9c Cacchi S, Fabrizi G, Goggiamani A, Persiani D. Org. Lett. 2008; 10: 1597
    • 9d Xu X, Chen J, Gao W, Wu H, Ding J, Su W. Tetrahedron 2010; 66: 2433
    • 9e Liu S, Bai Y, Cao X, Xiao F, Deng G.-J. Chem. Commun. 2013; 49: 7501
    • 9f Liu Z, Derosa J, Engle KM. J. Am. Chem. Soc. 2016; 138: 13076
    • 9g Rao S, Joy MN, Prabhu KR. J. Org. Chem. 2018; 83: 13707
    • 10a Jia C, Piao D, Oyamada J, Lu W, Kitamura T, Fujiwara Y. Science 2000; 287: 1992
    • 10b Jia C, Lu W, Oyamada J, Kitamura T, Matsuda K, Irie M, Fujiwara Y. J. Am. Chem. Soc. 2000; 122: 7252
    • 10c Lu W, Jia C, Kitamura T, Fujiwara Y. Org. Lett. 2000; 2: 2927
    • 10d Jia C, Piao D, Kitamura T, Fujiwara Y. J. Org. Chem. 2000; 65: 7516
    • 10e Jia C, Kitamura T, Fujiwara Y. Acc. Chem. Res. 2001; 34: 633
    • 11a Reetz MT, Sommer K. Eur. J. Org. Chem. 2003; 3485
    • 11b Shi Z, He C. J. Org. Chem. 2004; 69: 3669
  • 12 Yanagihara N, Lambert C, Iritani K, Utimoto K, Nozaki H. J. Am. Chem. Soc. 1986; 108: 2753
  • 13 Nelsen DL, Gagné MR. Organometallics 2009; 28: 950
    • 14a Shirakawa E, Takahashi G, Tsuchimoto T, Kawakami Y. Chem. Commun. 2001; 2688
    • 14b Murakami K, Ohmiya H, Yorimitsu H, Oshima K. Chem. Lett. 2007; 36: 1066
    • 14c Xue F, Zhao J, Hor TS. A. Chem. Commun. 2013; 49: 10121
    • 14d Dorn SC. M, Olsen AK, Kelemen RE, Shrestha R, Weix DJ. Tetrahedron Lett. 2015; 56: 3365
  • 15 Robbins DW, Hartwig JF. Science 2011; 333: 1423
    • 16a Babu MH, Kumar GR, Kant R, Reddy MS. Chem. Commun. 2017; 53: 3894
    • 16b Kumar GR, Kumar R, Rajesh M, Reddy MS. Chem. Commun. 2018; 54: 759
  • 17 Zhang X, Xie X, Liu Y. Chem. Sci. 2016; 7: 5815
  • 18 Lin P.-S, Jeganmohan M, Cheng C.-H. Chem. Eur. J. 2008; 14: 11296
  • 19 Barber ER, Hynds HM, Stephens CP, Lemons HE, Fredrickson ET, Wilger DJ. J. Org. Chem. 2019; 84: 11612
  • 20 León T, Correa A, Martin R. J. Am. Chem. Soc. 2013; 135: 1221
    • 21a Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita A.-M, Garg NK, Percec V. Chem. Rev. 2011; 111: 1346
    • 21b Lin Q, Diao T. J. Am. Chem. Soc. 2019; 141: 17937
    • 22a Yamamoto A, Suginome M. J. Am. Chem. Soc. 2005; 127: 15706
    • 22b Daini M, Yamamoto A, Suginome M. Asian J. Org. Chem. 2013; 2: 968
  • 23 Suginome M, Yamamoto A, Murakami M. J. Am. Chem. Soc. 2003; 125: 6358
  • 24 Igarashi T, Arai S, Nishida A. J. Org. Chem. 2013; 78: 4366
    • 25a Clarke C, Incerti-Pradillos CA, Lam HW. J. Am. Chem. Soc. 2016; 138: 8068
    • 25b Yap C, Lenagh-Snow GM. J, Karad SM, Lewis W, Diorazio LJ, Lam HW. Angew. Chem. Int. Ed. 2017; 56: 8216
    • 25c Karad SN, Panchal H, Clarke C, Lewis W, Lam HW. Angew. Chem. Int. Ed. 2018; 57: 9122
    • 25d Gillbard SM, Chung C.-H, Karad SN, Panchal H, Lewis W, Lam HW. Chem. Commun. 2018; 54: 11769
    • 26a Wang X, Liu Y, Martin R. J. Am. Chem. Soc. 2015; 137: 6476
    • 26b Börjesson M, Moragas T, Martin R. J. Am. Chem. Soc. 2016; 138: 7504
    • 27a Li Z, García-Domínguez A, Nevado C. J. Am. Chem. Soc. 2015; 137: 11610
    • 27b Li Z, García-Domínguez A, Nevado C. Angew. Chem. Int. Ed. 2016; 55: 6938
    • 27c García-Domínguez A, Müller S, Nevado C. Angew. Chem. Int. Ed. 2017; 56: 9949
    • 28a Shirakawa E, Yamasaki K, Yoshida H, Hiyama T. J. Am. Chem. Soc. 1999; 121: 10221
    • 28b Xue F, Zhao J, Hor TS. A, Hayashi T. J. Am. Chem. Soc. 2015; 137: 3189
    • 28c Johnson KA, Biswas S, Weix DJ. Chem. Eur. J. 2016; 22: 7399
    • 28d Shimkin KW, Montgomery J. J. Am. Chem. Soc. 2018; 140: 7074
  • 29 Burns RM, Hubbard JL. J. Am. Chem. Soc. 1994; 116: 9514
    • 30a Booth BL, Lloyd AD. J. Organomet. Chem. 1972; 35: 195
    • 30b Hart DW, Schwartz J. J. Organomet. Chem. 1975; 87: C11
    • 30c Michman M, Weksler-Nussbaum S. J. Chem. Soc., Perkin Trans. 2 1978; 872
    • 30d Jones WD, Chandler VL, Feher FJ. Organometallics 1990; 9: 164
    • 30e Morimoto T, Yamasaki K, Hirano A, Tsutsumi K, Kagawa N, Kakiuchi K, Harada Y, Fukumoto Y, Chatani N, Nishioka T. Org. Lett. 2009; 11: 1777
    • 31a Zargarian D, Alper H. Organometallics 1993; 12: 712
    • 31b Cacchi S, Fabrizi G, Marinelli F, Moro L, Pace P. Tetrahedron 1996; 52: 10225
    • 31c Krasovskiy A, Lipshutz BH. Org. Lett. 2011; 13: 3818
  • 32 Werner H, Weinand R, Knaup W, Peters K, von Schnering HG. Organometallics 1991; 10: 3967
    • 33a Huggins JM, Bergman RG. J. Am. Chem. Soc. 1979; 101: 4410
    • 33b Huggins JM, Bergman RG. J. Am. Chem. Soc. 1981; 103: 3002
    • 34a Hu X. Chem. Sci. 2011; 2: 1867
    • 34b Lyaskovskyy V, de Bruin B. ACS Catal. 2012; 2: 270
    • 34c Powers DC, Anderson BL, Nocera DG. J. Am. Chem. Soc. 2013; 135: 18876
  • 35 Tanke RS, Crabtree RH. J. Am. Chem. Soc. 1990; 112: 7984