Semin Musculoskelet Radiol 2020; 24(04): 386-401
DOI: 10.1055/s-0040-1710355
Review Article

Quantitative Magnetic Resonance Imaging of Cortical and Trabecular Bone

1   Department of Radiology, University of California, San Diego, California
,
Yajun Ma
1   Department of Radiology, University of California, San Diego, California
,
Zhao Wei
1   Department of Radiology, University of California, San Diego, California
,
Hyungseok Jang
1   Department of Radiology, University of California, San Diego, California
,
Eric Y. Chang
1   Department of Radiology, University of California, San Diego, California
2   Research Service, Veterans Affairs San Diego Healthcare System, San Diego, California
,
Jiang Du
1   Department of Radiology, University of California, San Diego, California
› Author Affiliations
Funding Source Eric Chang: National Institutes of Health (NIH) grant R01AR075825, and Veterans Affairs (VA) San Diego Healthcare System grants I01CX001388 and I01RX002604. Jiang Du: NIH grants 1R01NS092650 and R01AR062581-06.

Abstract

Bone is a composite material consisting of mineral, organic matrix, and water. Water in bone can be categorized as bound water (BW), which is bound to bone mineral and organic matrix, or as pore water (PW), which resides in Haversian canals as well as in lacunae and canaliculi. Bone is generally classified into two types: cortical bone and trabecular bone. Cortical bone is much denser than trabecular bone that is surrounded by marrow and fat. Magnetic resonance (MR) imaging has been increasingly used for noninvasive assessment of both cortical bone and trabecular bone. Bone typically appears as a signal void with conventional MR sequences because of its short T2*. Ultrashort echo time (UTE) sequences with echo times 100 to 1,000 times shorter than those of conventional sequences allow direct imaging of BW and PW in bone. This article summarizes several quantitative MR techniques recently developed for bone evaluation. Specifically, we discuss the use of UTE and adiabatic inversion recovery prepared UTE sequences to quantify BW and PW, UTE magnetization transfer sequences to quantify collagen backbone protons, UTE quantitative susceptibility mapping sequences to assess bone mineral, and conventional sequences for high-resolution imaging of PW as well as the evaluation of trabecular bone architecture.

Supplementary Material



Publication History

Article published online:
29 September 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.

 
  • References

  • 1 Komarov FI, Bkarev IN, Smolianitskiĭ AI. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. JAMA 2001; 285 (06) 785-795
  • 2 Zebaze RM, Ghasem-Zadeh A, Bohte A. , et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 2010; 375  9727 : 1729-1736
  • 3 Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 2011; 26 (01) 50-62
  • 4 Ritchie RO, Buehler MJ, Hansma P. Plasticity and toughness in bone. Phys Today 2009; 62 (06) 41-47
  • 5 Cowin SC. Bone poroelasticity. J Biomech 1999; 32 (03) 217-238
  • 6 Wehrli FW, Song HK, Saha PK, Wright AC. Quantitative MRI for the assessment of bone structure and function. NMR Biomed 2006; 19 (07) 731-764
  • 7 Ott SM. Cortical or trabecular bone: what's the difference?. Am J Nephrol 2018; 47 (06) 373-375
  • 8 Wang X, Ni Q. Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach. J Orthop Res 2003; 21 (02) 312-319
  • 9 Nyman JS, Ni Q, Nicolella DP, Wang X. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone 2008; 42 (01) 193-199
  • 10 Horch RA, Nyman JS, Gochberg DF, Dortch RD, Does MD. Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med 2010; 64 (03) 680-687
  • 11 Diaz E, Chung CB, Bae WC. , et al. Ultrashort echo time spectroscopic imaging (UTESI): an efficient method for quantifying bound and free water. NMR Biomed 2012; 25 (01) 161-168
  • 12 Biswas R, Bae W, Diaz E. , et al. Ultrashort echo time (UTE) imaging with bi-component analysis: bound and free water evaluation of bovine cortical bone subject to sequential drying. Bone 2012; 50 (03) 749-755
  • 13 Ong HH, Wright AC, Wehrli FW. Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone. J Bone Miner Res 2012; 27 (12) 2573-2581
  • 14 Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR Biomed 2013; 26 (05) 489-506
  • 15 Horch RA, Gochberg DF, Nyman JS, Does MD. Non-invasive predictors of human cortical bone mechanical properties: T(2)-discriminated H NMR compared with high resolution X-ray. PLoS One 2011; 6 (01) e16359
  • 16 Bae WC, Chen PC, Chung CB, Masuda K, D'Lima D, Du J. Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res 2012; 27 (04) 848-857
  • 17 Manhard MK, Nyman JS, Does MD. Advances in imaging approaches to fracture risk evaluation. Transl Res 2017; 181: 1-14
  • 18 Amstrup AK, Jakobsen NF, Moser E, Sikjaer T, Mosekilde L, Rejnmark L. Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal women. J Bone Miner Metab 2016; 34 (06) 638-645
  • 19 Martin RB, Ishida J. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech 1989; 22 (05) 419-426
  • 20 Boskey AL, Wright TM, Blank RD. Collagen and bone strength. J Bone Miner Res 1999; 14 (03) 330-335
  • 21 Zioupos P, Currey JD, Hamer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 1999; 45 (02) 108-116
  • 22 Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone 2002; 31 (01) 1-7
  • 23 Nyman JS, Roy A, Shen X, Acuna RL, Tyler JH, Wang X. The influence of water removal on the strength and toughness of cortical bone. J Biomech 2006; 39 (05) 931-938
  • 24 Wehrli FW, Fernández-Seara MA. Nuclear magnetic resonance studies of bone water. Ann Biomed Eng 2005; 33 (01) 79-86
  • 25 Mazess RB. Are patients with hip fractures more osteoporotic?. Am J Med 1985; 79 (06) A35 , A42
  • 26 Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996; 312  7041 : 1254-1259
  • 27 Faulkner KG. Bone matters: are density increases necessary to reduce fracture risk?. J Bone Miner Res 2000; 15 (02) 183-187
  • 28 Schuit SCE, van der Klift M, Weel AEAM. , et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 2004; 34 (01) 195-202
  • 29 Sandor T, Felsenberg D, Brown E. Comments on the hypotheses underlying fracture risk assessment in osteoporosis as proposed by the World Health Organization. Calcif Tissue Int 1999; 64 (03) 267-270
  • 30 McCreadie BR, Goldstein SA. Biomechanics of fracture: is bone mineral density sufficient to assess risk?. J Bone Miner Res 2000; 15 (12) 2305-2308
  • 31 Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R. Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 2002; 30 (05) 759-764
  • 32 Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 2001; 12 (12) 989-995
  • 33 Russo CR, Lauretani F, Bandinelli S. , et al. Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int 2003; 14 (07) 531-538
  • 34 De Laet CEDH, van Hout BA, Burger H, Hofman A, Pols HAP. Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ 1997; 315  7102 : 221-225
  • 35 Robson MD, Gatehouse PD, Bydder M, Bydder GM. Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 2003; 27 (06) 825-846
  • 36 Reichert ILH, Robson MD, Gatehouse PD. , et al. Magnetic resonance imaging of cortical bone with ultrashort TE pulse sequences. Magn Reson Imaging 2005; 23 (05) 611-618
  • 37 Chang EY, Du J, Chung CB. UTE imaging in the musculoskeletal system. J Magn Reson Imaging 2015; 41 (04) 870-883
  • 38 Wehrli FW. Magnetic resonance of calcified tissues. J Magn Reson 2013; 229: 35-48
  • 39 Jerban S, Ma Y, Namiranian B. , et al. Age-related decrease in collagen proton fraction in tibial tendons estimated by magnetization transfer modeling of ultrashort echo time magnetic resonance imaging (UTE-MRI). Sci Rep 2019; 9 (01) 17974
  • 40 Ni Q, Nyman JS, Wang X, Santos ADL, Nicolella DP. Assessment of water distribution changes in human cortical bone by nuclear magnetic resonance. Meas Sci Technol 2007; 18 (03) 715-723
  • 41 Fernández-Seara MA, Wehrli SL, Wehrli FW. Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophys J 2002; 82 (1 Pt 1): 522-529
  • 42 Fernández-Seara MA, Wehrli SL, Takahashi M, Wehrli FW. Water content predicts bone mineral density and mechanical properties. J Bone Jt Surg, Am Vol (CD-ROM Ed) 2004; 19: 289-295
  • 43 Granke M, Makowski AJ, Uppuganti S, Does MD, Nyman JS. Identifying novel clinical surrogates to assess human bone fracture toughness. J Bone Miner Res 2015; 30 (07) 1290-1300
  • 44 Du J, Hermida JC, Diaz E. , et al. Assessment of cortical bone with clinical and ultrashort echo time sequences. Magn Reson Med 2013; 70 (03) 697-704
  • 45 Du J, Diaz E, Carl M, Bae W, Chung CB, Bydder GM. Ultrashort echo time imaging with bicomponent analysis. Magn Reson Med 2012; 67 (03) 645-649
  • 46 Bae WC, Patil S, Biswas R. , et al. Magnetic resonance imaging assessed cortical porosity is highly correlated with μCT porosity. Bone 2014; 66: 56-61
  • 47 Akbari A, Abbasi-Rad S, Rad HS. T1 correlates age: a short-TE MR relaxometry study in vivo on human cortical bone free water at 1.5T. Bone 2016; 83: 17-22
  • 48 Abbasi-rad S, Akbari A, Malekzadeh M. , et al. Quantifying cortical bone free water using short echo time (STE-MRI) at 1. 5T. Available at: https://arxiv.org/ftp/arxiv/papers/2002/2002.00209.pdf
  • 49 Techawiboonwong A, Song HK, Leonard MB, Wehrli FW. Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology 2008; 248 (03) 824-833
  • 50 Du J, Carl M, Bydder M, Takahashi A, Chung CB, Bydder GM. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reson 2010; 207 (02) 304-311
  • 51 Du J, Bydder M, Takahashi AM, Chung CB. Two-dimensional ultrashort echo time imaging using a spiral trajectory. Magn Reson Imaging 2008; 26 (03) 304-312
  • 52 Du J, Bydder M, Takahashi AM, Carl M, Chung CB, Bydder GM. Short T2 contrast with three-dimensional ultrashort echo time imaging. Magn Reson Imaging 2011; 29 (04) 470-482
  • 53 Rad HS, Lam SCB, Magland JF. , et al. Quantifying cortical bone water in vivo by three-dimensional ultra-short echo-time MRI. NMR Biomed 2011; 24 (07) 855-864
  • 54 Li C, Seifert AC, Rad HS. , et al. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology 2014; 272 (03) 796-806
  • 55 Manhard MK, Horch RA, Gochberg DF, Nyman JS, Does MD. In vivo quantitative MR imaging of bound and pore water in cortical bone. Radiology 2015; 277 (01) 221-229
  • 56 Seifert AC, Wehrli FW. Erratum to: Solid-state quantitative 1H and 31P MRI of cortical bone in humans. Curr Osteoporos Rep 2016; 14 (04) 159-161
  • 57 Zhao X, Song HK, Seifert AC, Li C, Wehrli FW. Feasibility of assessing bone matrix and mineral properties in vivo by combined solid-state 1H and 31P MRI. PLOS One 2017; 12 (03) e0173995
  • 58 Jerban S, Ma Y, Li L. , et al. Volumetric mapping of bound and pore water as well as collagen protons in cortical bone using 3D ultrashort echo time cones MR imaging techniques. Bone 2019; 127: 120-128
  • 59 Jerban S, Ma Y, Jang H. , et al. Water proton density in human cortical bone obtained from ultrashort echo time (UTE) MRI predicts bone microstructural properties. Magn Reson Imaging 2020; 67: 85-89
  • 60 Ma YJ, Lu X, Carl M. , et al. Accurate T1 mapping of short T2 tissues using a three-dimensional ultrashort echo time cones actual flip angle imaging-variable repetition time (3D UTE-Cones AFI-VTR) method. Magn Reson Med 2018; 80 (02) 598-608
  • 61 Wu Y, Ackerman JL, Chesler DA, Graham L, Wang Y, Glimcher MJ. Density of organic matrix of native mineralized bone measured by water- and fat-suppressed proton projection MRI. Magn Reson Med 2003; 50 (01) 59-68
  • 62 Cao H, Ackerman JL, Hrovat MI, Graham L, Glimcher MJ, Wu Y. Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms. Magn Reson Med 2008; 60 (06) 1433-1443
  • 63 Cao H, Nazarian A, Ackerman JL. , et al. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models. Bone 2010; 46 (06) 1582-1590
  • 64 Larson PEZ, Gurney PT, Nayak K, Gold GE, Pauly JM, Nishimura DG. Designing long-T2 suppression pulses for ultrashort echo time imaging. Magn Reson Med 2006; 56 (01) 94-103
  • 65 Larson PEZ, Conolly SM, Pauly JM, Nishimura DG. Using adiabatic inversion pulses for long-T2 suppression in ultrashort echo time (UTE) imaging. Magn Reson Med 2007; 58 (05) 952-961
  • 66 Du J, Hamilton G, Takahashi A, Bydder M, Chung CB. Ultrashort echo time spectroscopic imaging (UTESI) of cortical bone. Magn Reson Med 2007; 58 (05) 1001-1009
  • 67 Du J, Takahashi AM, Bae WC, Chung CB, Bydder GM. Dual inversion recovery, ultrashort echo time (DIR UTE) imaging: creating high contrast for short-T(2) species. Magn Reson Med 2010; 63 (02) 447-455
  • 68 Du J, Takahashi AM, Bydder M, Chung CB, Bydder GM. Ultrashort TE imaging with off-resonance saturation contrast (UTE-OSC). Magn Reson Med 2009; 62 (02) 527-531
  • 69 Horch RA, Gochberg DF, Nyman JS, Does MD. Clinically compatible MRI strategies for discriminating bound and pore water in cortical bone. Magn Reson Med 2012; 68 (06) 1774-1784
  • 70 Du J, Chiang AJT, Chung CB. , et al. Orientational analysis of the Achilles tendon and enthesis using an ultrashort echo time spectroscopic imaging sequence. Magn Reson Imaging 2010; 28 (02) 178-184
  • 71 Chen J, Chang EY, Carl M. , et al. Measurement of bound and pore water T1 relaxation times in cortical bone using three-dimensional ultrashort echo time cones sequences. Magn Reson Med 2017; 77 (06) 2136-2145
  • 72 Guo T, Ma Y, Jerban S. , et al. T1 measurement of bound water in cortical bone using 3D adiabatic inversion recovery ultrashort echo time (3D IR-UTE) Cones imaging. Magn Reson Med 2019; 00: 1-12
  • 73 Chen J, Grogan SP, Shao H. , et al. Evaluation of bound and pore water in cortical bone using ultrashort-TE MRI. NMR Biomed 2015; 28 (12) 1754-1762
  • 74 Abbasi-Rad S, Saligheh Rad H. Quantification of human cortical bone bound and free water in vivo with ultrashort echo time MR imaging: a model-based approach. Radiology 2017; 283 (03) 862-872
  • 75 Manhard MK, Harkins KD, Gochberg DF, Nyman JS, Does MD. 30-Second bound and pore water concentration mapping of cortical bone using 2D UTE with optimized half-pulses. Magn Reson Med 2017; 77 (03) 945-950
  • 76 Manhard MK, Uppuganti S, Granke M, Gochberg DF, Nyman JS, Does MD. MRI-derived bound and pore water concentrations as predictors of fracture resistance. Bone 2016; 87: 1-10
  • 77 Jerban S, Ma Y, Wong JH. , et al. Ultrashort echo time magnetic resonance imaging (UTE-MRI) of cortical bone correlates well with histomorphometric assessment of bone microstructure. Bone 2019; 123 (123) 8-17
  • 78 Seifert AC, Wehrli SL, Wehrli FW. Bi-component T2 * analysis of bound and pore bone water fractions fails at high field strengths. NMR Biomed 2015; 28 (07) 861-872
  • 79 Li S, Chang EY, Bae WC. , et al. Ultrashort echo time bi-component analysis of cortical bone—a field dependence study. Magn Reson Med 2014; 71 (03) 1075-1081
  • 80 Sundh D, Rudäng R, Zoulakis M, Nilsson AG, Darelid A, Lorentzon M. A high amount of local adipose tissue is associated with high cortical porosity and low bone material strength in older women. J Bone Miner Res 2016; 31 (04) 749-757
  • 81 Devlin MJ, Rosen CJ. The bone-fat interface: basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol 2015; 3 (02) 141-147
  • 82 Kremer R, Gilsanz V. Fat and bone: an odd couple. Front Endocrinol (Lausanne) 2016; 6 (March): 190
  • 83 Lu X, Jerban S, Wan L. , et al. Three-dimensional ultrashort echo time imaging with tricomponent analysis for human cortical bone. Magn Reson Med 2019; 82 (01) 348-355
  • 84 Li S, Ma L, Chang EY. , et al. Effects of inversion time on inversion recovery prepared ultrashort echo time (IR-UTE) imaging of bound and pore water in cortical bone. NMR Biomed 2015; 28 (01) 70-78
  • 85 Ma YJ, Jerban S, Jang H, Chang EY, Du J. Fat suppression for ultrashort echo time imaging using a novel soft-hard composite radiofrequency pulse. Magn Reson Med 2019; 82 (06) 2178-2187
  • 86 Jang H, Carl M, Ma Y. , et al. Fat suppression for ultrashort echo time imaging using a single-point Dixon method. NMR Biomed 2019; 32 (05) e4069
  • 87 Hamilton G, Smith Jr DL, Bydder M, Nayak KS, Hu HH. MR properties of brown and white adipose tissues. J Magn Reson Imaging 2011; 34 (02) 468-473
  • 88 Hamilton G, Yokoo T, Bydder M. , et al. In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed 2011; 24 (07) 784-790
  • 89 Jerban S, Lu X, Dorthe EW. , et al. Correlations of cortical bone microstructural and mechanical properties with water proton fractions obtained from ultrashort echo time (UTE) MRI tricomponent T2* model. NMR Biomed 2020; 33 (03) e4233
  • 90 Rajapakse CS, Bashoor-Zadeh M, Li C, Sun W, Wright AC, Wehrli FW. Volumetric cortical bone porosity assessment with mr imaging: validation and clinical feasibility. Radiology 2015; 276 (02) 526-535
  • 91 Hong AL, Ispiryan M, Padalkar MV. , et al. MRI-derived bone porosity index correlates to bone composition and mechanical stiffness. Bone Rep 2019; 11 (February): 100213
  • 92 Ma YJ, Chang EY, Bydder GM, Du J. Can ultrashort-TE (UTE) MRI sequences on a 3-T clinical scanner detect signal directly from collagen protons: freeze-dry and D2 O exchange studies of cortical bone and Achilles tendon specimens. NMR Biomed 2016; 29 (07) 912-917
  • 93 Chang EY, Bae WC, Shao H. , et al. Ultrashort echo time magnetization transfer (UTE-MT) imaging of cortical bone. NMR Biomed 2015; 28 (07) 873-880
  • 94 Ma Y, Chang EY, Carl M, Du J. Quantitative magnetization transfer ultrashort echo time imaging using a time-efficient 3D multispoke Cones sequence. Magn Reson Med 2017; 00: 1-9
  • 95 Ma YJ, Shao H, Du J, Chang EY. Ultrashort echo time magnetization transfer (UTE-MT) imaging and modeling: magic angle independent biomarkers of tissue properties. NMR Biomed 2016; 29 (11) 1546-1552
  • 96 Springer F, Martirosian P, Machann J, Schwenzer NF, Claussen CD, Schick F. Magnetization transfer contrast imaging in bovine and human cortical bone applying an ultrashort echo time sequence at 3 Tesla. Magn Reson Med 2009; 61 (05) 1040-1048
  • 97 Jerban S, Ma Y, Nazaran A. , et al. Detecting stress injury (fatigue fracture) in fibular cortical bone using quantitative ultrashort echo time-magnetization transfer (UTE-MT): An ex vivo study. NMR Biomed 2018; 31 (11) e3994
  • 98 Jerban S, Ma Y, Wan L. , et al. Collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modelling correlates significantly with cortical bone porosity measured with micro-computed tomography (μCT). NMR Biomed 2019; 32 (02) e4045
  • 99 Ma Y, Tadros A, Du J, Chang EY. Quantitative two-dimensional ultrashort echo time magnetization transfer (2D UTE-MT) imaging of cortical bone. Magn Reson Med 2018; 79 (04) 1941-1949
  • 100 Jerban S, Ma Y, Dorthe EW. , et al. Assessing cortical bone mechanical properties using collagen proton fraction from ultrashort echo time magnetization transfer (UTE-MT) MRI modeling. Bone Rep 2019; 11 (02) 100220
  • 101 Chen W, Gauthier SA, Gupta A. , et al. Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology 2014; 271 (01) 183-192
  • 102 Straub S, Laun FB, Emmerich J. , et al. Potential of quantitative susceptibility mapping for detection of prostatic calcifications. J Magn Reson Imaging 2017; 45 (03) 889-898
  • 103 Wisnieff C, Ramanan S, Olesik J, Gauthier S, Wang Y, Pitt D. Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron. Magn Reson Med 2015; 74 (02) 564-570
  • 104 Langkammer C, Liu T, Khalil M. , et al. Quantitative susceptibility mapping in multiple sclerosis. Radiology 2013; 267 (02) 551-559
  • 105 Wen Y, Nguyen TD, Liu Z. , et al. Cardiac quantitative susceptibility mapping (QSM) for heart chamber oxygenation. Magn Reson Med 2018; 79 (03) 1545-1552
  • 106 Fan AP, Bilgic B, Gagnon L. , et al. Quantitative oxygenation venography from MRI phase. Magn Reson Med 2014; 72 (01) 149-159
  • 107 Zhang J, Liu T, Gupta A, Spincemaille P, Nguyen TD, Wang Y. Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2 ) using quantitative susceptibility mapping (QSM). Magn Reson Med 2015; 74 (04) 945-952
  • 108 Xu B, Liu T, Spincemaille P, Prince M, Wang Y. Flow compensated quantitative susceptibility mapping for venous oxygenation imaging. Magn Reson Med 2014; 72 (02) 438-445
  • 109 de Rochefort L, Liu T, Kressler B. , et al. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 2010; 63 (01) 194-206
  • 110 Wang Y, Liu T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med 2015; 73 (01) 82-101
  • 111 Chen Y, Guo Y, Zhang X, Mei Y, Feng Y, Zhang X. Bone susceptibility mapping with MRI is an alternative and reliable biomarker of osteoporosis in postmenopausal women. Eur Radiol 2018; 28 (12) 5027-5034
  • 112 Diefenbach MN, Meineke J, Ruschke S, Baum T, Gersing A, Karampinos DC. On the sensitivity of quantitative susceptibility mapping for measuring trabecular bone density. Magn Reson Med 2019; 81 (03) 1739-1754
  • 113 Dimov AV, Liu Z, Spincemaille P, Prince MR, Du J, Wang Y. Bone quantitative susceptibility mapping using a chemical species-specific R2* signal model with ultrashort and conventional echo data. Magn Reson Med 2018; 79 (01) 121-128
  • 114 Jang H, Lu X, Carl M. , et al. True phase quantitative susceptibility mapping using continuous single-point imaging: a feasibility study. Magn Reson Med 2019; 81 (03) 1907-1914
  • 115 Jerban S, Lu X, Jang H. , et al. Significant correlations between human cortical bone mineral density and quantitative susceptibility mapping (QSM) obtained with 3D Cones ultrashort echo time magnetic resonance imaging (UTE-MRI). Magn Reson Imaging 2019; 62 (October): 104-110
  • 116 Seifert AC, Li C, Rajapakse CS. , et al. Bone mineral (31)P and matrix-bound water densities measured by solid-state (31)P and (1)H MRI. NMR Biomed 2014; 27 (07) 739-748
  • 117 Wu Y, Reese TG, Cao H. , et al. Bone mineral imaged in vivo by 31P solid state MRI of human wrists. J Magn Reson Imaging 2011; 34 (03) 623-633
  • 118 Anumula S, Wehrli SL, Magland J, Wright AC, Wehrli FW. Ultra-short echo-time MRI detects changes in bone mineralization and water content in OVX rat bone in response to alendronate treatment. Bone 2010; 46 (05) 1391-1399
  • 119 Anumula S, Magland J, Wehrli SL. , et al. Measurement of phosphorus content in normal and osteomalacic rabbit bone by solid-state 3D radial imaging. Magn Reson Med 2006; 56 (05) 946-952
  • 120 Anumula S, Magland J, Wehrli SL, Ong H, Song HK, Wehrli FW. Multi-modality study of the compositional and mechanical implications of hypomineralization in a rabbit model of osteomalacia. Bone 2008; 42 (02) 405-413
  • 121 Robson MD, Gatehouse PD, Bydder GM, Neubauer S. Human imaging of phosphorus in cortical and trabecular bone in vivo. Magn Reson Med 2004; 51 (05) 888-892
  • 122 Zhao X, Song HK, Wehrli FW. In vivo bone 31P relaxation times and their implications on mineral quantification. Magn Reson Med 2018; 80 (06) 2514-2524
  • 123 Majumdar S, Thomasson D, Shimakawa A, Genant HK. Quantitation of the susceptibility difference between trabecular bone and bone marrow: experimental studies. Magn Reson Med 1991; 22 (01) 111-127
  • 124 Ford JC, Wehrli FW. In vivo quantitative characterization of trabecular bone by NMR interferometry and localized proton spectroscopy. Magn Reson Med 1991; 17 (02) 543-551
  • 125 Link TM, Majumdar S, Augat P. , et al. Proximal femur: assessment for osteoporosis with T2* decay characteristics at MR imaging. Radiology 1998; 209 (02) 531-536
  • 126 Majumdar S. Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging 2002; 13 (05) 323-334
  • 127 Ma YJ, Chen Y, Li L. , et al. Trabecular bone imaging using a 3D adiabatic inversion recovery prepared ultrashort TE Cones sequence at 3T. Magn Reson Med 2020; 83 (05) 1640-1651
  • 128 Wu Y, Dai G, Ackerman JL. , et al. Water- and fat-suppressed proton projection MRI (WASPI) of rat femur bone. Magn Reson Med 2007; 57 (03) 554-567
  • 129 Weiger M, Stampanoni M, Pruessmann KP. Direct depiction of bone microstructure using MRI with zero echo time. Bone 2013; 54 (01) 44-47
  • 130 Wurnig MC, Calcagni M, Kenkel D. , et al. Characterization of trabecular bone density with ultra-short echo-time MRI at 1.5, 3.0 and 7.0 T--comparison with micro-computed tomography. NMR Biomed 2014; 27 (10) 1159-1166
  • 131 Majumdar S, Genant HK. A review of the recent advances in magnetic resonance imaging in the assessment of osteoporosis. Osteoporos Int 1995; 5 (02) 79-92
  • 132 Beuf O, Newitt DC, Mosekilde L, Majumdar S. Trabecular structure assessment in lumbar vertebrae specimens using quantitative magnetic resonance imaging and relationship with mechanical competence. J Bone Miner Res 2001; 16 (08) 1511-1519
  • 133 Griffith JF, Yeung DKW, Antonio GE. , et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005; 236 (03) 945-951
  • 134 Shih TT-F, Chang C-J, Hsu C-Y, Wei S-Y, Su K-C, Chung H-W. Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine. Spine (Phila Pa 1976) 2004; 29 (Suppl. 24) 2844-2850
  • 135 Griffith JF, Yeung DKW, Antonio GE. , et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 2006; 241 (03) 831-838
  • 136 Griffith JF, Yeung DKW, Ma HT, Leung JCS, Kwok TCY, Leung PC. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging 2012; 36 (01) 225-230
  • 137 Li X, Kuo D, Schafer AL. , et al. Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging 2011; 33 (04) 974-979
  • 138 Mostoufi-Moab S, Magland J, Isaacoff EJ. , et al. Adverse fat depots and marrow adiposity are associated with skeletal deficits and insulin resistance in long-term survivors of pediatric hematopoietic stem cell transplantation. J Bone Miner Res 2015; 30 (09) 1657-1666
  • 139 Karampinos DC, Melkus G, Baum T, Bauer JS, Rummeny EJ, Krug R. Bone marrow fat quantification in the presence of trabecular bone: initial comparison between water-fat imaging and single-voxel MRS. Magn Reson Med 2014; 71 (03) 1158-1165
  • 140 Gee CS, Nguyen JTK, Marquez CJ. , et al. Validation of bone marrow fat quantification in the presence of trabecular bone using MRI. J Magn Reson Imaging 2015; 42 (02) 539-544
  • 141 Reeder SB, Robson PM, Yu H. , et al. Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 2009; 29 (06) 1332-1339
  • 142 Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008; 60 (05) 1122-1134
  • 143 Sharma AK, Toussaint ND, Elder GJ. , et al. Magnetic resonance imaging based assessment of bone microstructure as a non-invasive alternative to histomorphometry in patients with chronic kidney disease. Bone 2018; 114 (114) 14-21
  • 144 Chang G, Deniz CM, Honig S. , et al. Feasibility of three-dimensional MRI of proximal femur microarchitecture at 3 Tesla using 26 receive elements without and with parallel imaging. J Magn Reson Imaging 2014; 40 (01) 229-238
  • 145 Han M, Chiba K, Banerjee S, Carballido-Gamio J, Krug R. Variable flip angle three-dimensional fast spin-echo sequence combined with outer volume suppression for imaging trabecular bone structure of the proximal femur. J Magn Reson Imaging 2015; 41 (05) 1300-1310
  • 146 Wehrli FW. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging 2007; 25 (02) 390-409
  • 147 Zhang XH, Liu XS, Vasilic B. , et al. In vivo microMRI-based finite element and morphological analyses of tibial trabecular bone in eugonadal and hypogonadal men before and after testosterone treatment. J Bone Miner Res 2008; 23 (09) 1426-1434
  • 148 Wehrli FW, Rajapakse CS, Magland JF, Snyder PJ. Mechanical implications of estrogen supplementation in early postmenopausal women. J Bone Miner Res 2010; 25 (06) 1406-1414
  • 149 Rajapakse CS, Leonard MB, Bhagat YA, Sun W, Magland JF, Wehrli FW. Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation. Radiology 2012; 262 (03) 912-920
  • 150 Rajapakse CS, Magland JF, Wald MJ. , et al. Computational biomechanics of the distal tibia from high-resolution MR and micro-CT images. Bone 2010; 47 (03) 556-563
  • 151 Rajapakse CS, Magland J, Zhang XH. , et al. Implications of noise and resolution on mechanical properties of trabecular bone estimated by image-based finite-element analysis. J Orthop Res 2009; 27 (10) 1263-1271
  • 152 Magland JF, Zhang N, Rajapakse CS, Wehrli FW. Computationally-optimized bone mechanical modeling from high-resolution structural images. PLoS One 2012; 7 (04) e35525
  • 153 Rajapakse CS, Kobe EA, Batzdorf AS, Hast MW, Wehrli FW. Accuracy of MRI-based finite element assessment of distal tibia compared to mechanical testing. Bone 2018; 108: 71-78
  • 154 Chang G, Rajapakse CS, Diamond M. , et al. Micro-finite element analysis applied to high-resolution MRI reveals improved bone mechanical competence in the distal femur of female pre-professional dancers. Osteoporos Int 2013; 24 (04) 1407-1417
  • 155 Chang G, Rajapakse CS, Babb JS, Honig SP, Recht MP, Regatte RR. In vivo estimation of bone stiffness at the distal femur and proximal tibia using ultra-high-field 7-Tesla magnetic resonance imaging and micro-finite element analysis. J Bone Miner Metab 2012; 30 (02) 243-251
  • 156 Chang G, Honig S, Brown R. , et al. Finite element analysis applied to 3-T MR imaging of proximal femur microarchitecture: lower bone strength in patients with fragility fractures compared with control subjects. Radiology 2014; 272 (02) 464-474
  • 157 Magland J, Vasilic B, Wehrli FW. Fast low-angle dual spin-echo (FLADE): a new robust pulse sequence for structural imaging of trabecular bone. Magn Reson Med 2006; 55 (03) 465-471
  • 158 Techawiboonwong A, Song HK, Magland JF, Saha PK, Wehrli FW. Implications of pulse sequence in structural imaging of trabecular bone. J Magn Reson Imaging 2005; 22 (05) 647-655