CC BY-NC-ND 4.0 · Indian Journal of Neurotrauma 2021; 18(01): 01-06
DOI: 10.1055/s-0040-1713724
Review Article

Collateral Circulation in Spinal Cord Injury: A Comprehensive Review

Ezequiel Garcia-Ballestas
1   Faculty of Medicine, Center for Biomedical Research (CIB), University of Cartagena, Cartagena, Colombia
,
B. V. Murlimanju
2   Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
,
Yeider A. Durango-Espinosa
1   Faculty of Medicine, Center for Biomedical Research (CIB), University of Cartagena, Cartagena, Colombia
,
Andrei F. Joaquim
3   Neurosurgery Division, Cartagena de Indias, Bolivar Department of Neurology, State University of Campinas, Campinas-Sao Paulo, Brazil
,
Harold E. Vasquez
4   Universidad del Sinu, Cartagena de Indias, Consejo Latinoamericano de Neurointensivismo (CLaNi), Cartagena de Indias, Colombia
,
Luis Rafael Moscote-Salazar
5   Neurosurgeon-Critical Care, Center for Biomedical Research (CIB), Cartagena Neurotrauma Research Group, Faculty of Medicine, University of Cartagena, Cartagena, Colombia
,
Amit Agrawal
6   Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
› Institutsangaben

Abstract

Surgery is the most common cause of spinal cord ischemia; it is also caused by hemodynamic changes, which disrupt the blood flow. Direct ligation of the spinal arteries, especially the Adamkiewicz artery is involved as well. Other causes of spinal cord ischemia include arteriography procedures, thoracic surgery, epidural and rachianesthesia, foraminal infiltration, arterial dissection, systemic hypotension, emboligenic heart disease, thoracic disc herniation, and compression. Understanding the vascular anatomy of the spinal cord is essential to develop optimal strategies for preventing ischemic injuries to the spinal cord. During ischemia, a rich network of intra and paraspinal collaterals allow enough blood flow to compensate the intensity of spinal cord ischemia. In case of interruption of flow of a main artery, the collateral artery increases its flow to maintain perfusion to the tissues. Avoiding spinal cord ischemia by using collateral circulation is necessary to prevent the establishment of hypovolemia, hyperthermia and elevations in venous pressures. The objective of this narrative review is to present the current concepts of spinal collateral circulation and its role in the setting of ischemic events, affecting the vascular supply of the spinal cord.



Publikationsverlauf

Artikel online veröffentlicht:
29. September 2020

© 2020. Neurotrauma Society of India. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Etz CD, Kari FA, Mueller CS. et al. The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg 2011; 141 (04) 1020-1028
  • 2 Salkov M, Tsymbaliuk V, Dzyak L, Rodinsky A, Cherednichenko Y, Titov G. New concept of pathogenesis of impaired circulation in traumatic cervical spinal cord injury and its impact on disease severity: case series of four patients. Eur Spine J 2016; 25 (Suppl. 01) 11-18
  • 3 Kise Y, Kuniyoshi Y, Inafuku H, Nagano T, Hirayasu T, Yamashiro S. Directly measuring spinal cord blood flow and spinal cord perfusion pressure via the collateral network: correlations with changes in systemic blood pressure. J Thorac Cardiovasc Surg 2015; 149 (01) 360-366
  • 4 Luehr M, Mohr FW, Etz CD. Indirect neuromonitoring of the spinal cord by near-infrared spectroscopy of the paraspinous thoracic and lumbar muscles in aortic surgery. Thorac Cardiovasc Surg 2016; 64 (04) 333-335
  • 5 Saliou G, Krings T. Vascular diseases of the spine. Handb Clin Neurol 2016; 136: 707-716
  • 6 Yasui H, Ozawa N, Mikami S. et al. Spinal cord ischemia secondary to epidural metastasis from small cell lung carcinoma. Am J Case Rep 2017; 18: 276-280
  • 7 Bosmia AN, Tubbs RS, Hogan E. et al. Blood supply to the human spinal cord: part II. Imaging and pathology. Clin Anat 2015; 28 (01) 65-74
  • 8 Griepp EB, Di Luozzo G, Schray D, Stefanovic A, Geisbüsch S, Griepp RB. The anatomy of the spinal cord collateral circulation. Ann Cardiothorac Surg 2012; 1 (03) 350-357
  • 9 Meffert P, Bischoff MS, Brenner R, Siepe M, Beyersdorf F, Kari FA. Significance and function of different spinal collateral compartments following thoracic aortic surgery: immediate versus long-term flow compensation. Eur J Cardiothorac Surg 2014; 45 (05) 799-804
  • 10 Wu L, Qiu Y, Ling W, Shen Q. Change pattern of somatosensory-evoked potentials after occlusion of segmental vessels: possible indicator for spinal cord ischemia. Eur Spine J 2006; 15 (03) 335-340
  • 11 Dias-Neto M, Reis PV, Rolim D, Ramos JF, Teixeira JF, Sampaio S. Strategies to prevent TEVAR-related spinal cord ischemia. Vascular 2017; 25 (03) 307-315
  • 12 Colman MW, Hornicek FJ, Schwab JH. Spinal cord blood supply and its surgical implications. J Am Acad Orthop Surg 2015; 23 (10) 581-591
  • 13 Shine TS, Harrison BA, De Ruyter ML. et al. Motor and somatosensory evoked potentials: their role in predicting spinal cord ischemia in patients undergoing thoracoabdominal aortic aneurysm repair with regional lumbar epidural cooling. Anesthesiology 2008; 108 (04) 580-587
  • 14 Griepp RB, Griepp EB. Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg 2007; 83 (02) S865-S869, discussion S890–S892
  • 15 Griepp EB, Griepp RB. The collateral network concept: minimizing paraplegia secondary to thoracoabdominal aortic aneurysm resection. Tex Heart Inst J 2010; 37 (06) 672-674
  • 16 Kari FA, Wittmann K, Saravi B. et al. Immediate spinal cord collateral blood flow during thoracic aortic procedures: the role of epidural arcades. Semin Thorac Cardiovasc Surg 2016; 28 (02) 378-387
  • 17 Peckham ME, Hutchins TA. Imaging of vascular disorders of the spine. Radiol Clin North Am 2019; 57 (02) 307-318
  • 18 Winter B, Pattani H. Spinal cord injury. Anaesth Intensive Care Med 2011; 12: 403-405
  • 19 Berg P, Kaufmann D, van Marrewijk CJ, Buth J. Spinal cord ischaemia after stent-graft treatment for infra-renal abdominal aortic aneurysms. Analysis of the Eurostar database. Eur J Vasc Endovasc Surg 2001; 22 (04) 342-347
  • 20 Chan LL, Kumar AJ, Leeds NE, Forman AD. Post-epidural analgesia spinal cord infarction: MRI correlation. Acta Neurol Scand 2002; 105 (04) 344-348
  • 21 Wu Y, Li W, Xie X, Jing Z, Lu W, Huang L. Endovascular treatment with tirofiban during the acute stage of cervical spinal cord infarction due to vertebral artery dissection. J Spinal Cord Med 2020; 43 (01) 130-133
  • 22 Rigney L, Cappelen-Smith C, Sebire D, Beran RG, Cordato D. Nontraumatic spinal cord ischaemic syndrome. J Clin Neurosci 2015; 22 (10) 1544-1549
  • 23 AbdelRazek M, Elsadek R, Elsadek L. Case series of two patients with Fibrocartilaginous Embolism mimicking Transverse Myelitis of the Spinal Cord. J Clin Neurosci 2017; 40: 66-68
  • 24 Ahuja CS, Martin AR, Fehlings M. Recent advances in managing a spinal cord injury secondary to trauma. F1000 Res 2016; 5: 5
  • 25 Ahuja CS, Nori S, Tetreault L. et al. Traumatic spinal cord injury-Repair and regeneration. Neurosurgery 2017; 80 (3S) S9-S22
  • 26 Rogers WK, Todd M. Acute spinal cord injury. Best Pract Res Clin Anaesthesiol 2016; 30 (01) 27-39
  • 27 Rouanet C, Reges D, Rocha E, Gagliardi V, Silva GS. Traumatic spinal cord injury: current concepts and treatment update. Arq Neuropsiquiatr 2017; 75 (06) 387-393
  • 28 Ballesteros Plaza V, Marré Pacheco B, Martínez Aguilar C, Fleiderman Valenzuela J, Zamorano Pérez JJ. Lesión de la médula espinal: actualización bibliográfica: fisiopatología y tratamiento inicial. Coluna/Columna 2012; 11: 73-76
  • 29 Mataliotakis GI, Tsirikos AI. Spinal cord trauma: pathophysiology, classification of spinal cord injury syndromes, treatment principles and controversies. Orthop Trauma 2016; 30: 440-449
  • 30 Kim Y-H, Ha K-Y, Kim S-I. Spinal cord injury and related clinical trials. Clin Orthop Surg 2017; 9 (01) 1-9
  • 31 Lee J, Thumbikat P. Pathophysiology, presentation and management of spinal cord injury. Surgery 2015; 33: 238-247
  • 32 Domoto S, Kimura F, Asakura T, Nakazawa K, Koike H, Niinami H. Intraspinal collateral circulation to the artery of Adamkiewicz detected with intra-arterial injected computed tomographic angiography. J Vasc Surg 2016; 63 (06) 1631-1634
  • 33 Bosmia AN, Hogan E, Loukas M, Tubbs RS, Cohen-Gadol AA. Blood supply to the human spinal cord: part I. Anatomy and hemodynamics. Clin Anat 2015; 28 (01) 52-64
  • 34 Godet G, Bertrand M, Fléron MH. et al. Cerebrospinal fluid drainage and thoracic endovascular aneurysm repair. Asian Cardiovasc Thorac Ann 2017; 25 (09) 608-617
  • 35 Ji Y, Meng B, Yuan C, Yang H, Zou J. Monitoring somatosensory evoked potentials in spinal cord ischemia-reperfusion injury. Neural Regen Res 2013; 8 (33) 3087-3094
  • 36 von Aspern K, Haunschild J, Hoyer A. et al. Non-invasive spinal cord oxygenation monitoring: validating collateral network near-infrared spectroscopy for thoracoabdominal aortic aneurysm repair. Eur J Cardiothorac Surg 2016; 50 (04) 675-683
  • 37 Miranda V, Sousa J, Mansilha A. Spinal cord injury in endovascular thoracoabdominal aortic aneurysm repair: prevalence, risk factors and preventive strategies. Int Angiol 2018; 37 (02) 112-126
  • 38 DeAnda Jr A, Roughneen PT. Spinal cord collateral pathways-The road not taken. Semin Thorac Cardiovasc Surg 2016; 28 (02) 388-389
  • 39 Catapano JS, John Hawryluk GW, Whetstone W. et al. Higher mean arterial pressure values correlate with neurologic improvement in patients with initially complete spinal cord injuries. World Neurosurg 2016; 96: 72-79
  • 40 Fernández Suárez FE, Fernández Del Valle D, González Alvarez A, Pérez-Lozano B. Intraoperative care for aortic surgery using circulatory arrest. J Thorac Dis 2017; 9 (Suppl. 06) S508-S520
  • 41 Wu GJ, Chen WF, Sung CS. et al. Preventive effects of intrathecal methylprednisolone administration on spinal cord ischemia in rats: the role of excitatory amino acid metabolizing systems. Neuroscience 2007; 147 (02) 294-303
  • 42 Keenan JE, Benrashid E, Kale E, Nicoara A, Husain AM, Hughes GC. Neurophysiological intraoperative monitoring during aortic arch surgery. Semin Cardiothorac Vasc Anesth 2016; 20 (04) 273-282
  • 43 Manetta F, Mullan CW, Catalano MA. Neuroprotective strategies in repair and replacement of the aortic arch. Int J Angiol 2018; 27: 98-109
  • 44 Krüger T, Hoffmann I, Blettner M, Borger MA, Schlensak C, Weigang E. GERAADA Investigators. Intraoperative neuroprotective drugs without beneficial effects? Results of the German Registry for Acute Aortic Dissection Type A (GERAADA). Eur J Cardiothorac Surg 2013; 44 (05) 939-946