CC BY-NC-ND 4.0 · Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery 2021; 40(02): e146-e151
DOI: 10.1055/s-0040-1718997
Original Article | Artigo Original

Higher Concentration of Taenia Antigens in the CSF is Related to Slight Ventricle Enlargement and Periventricular Neuronal Decrease in Young Rats

Maior concentração de antígenos de Taenia está associada a ligeiro aumento de ventrículos e redução de neurônios periventriculares em ratos jovens
Mônica Almeida Silva
1   Department of Neurology, Psychology and Psychiatry, Botucatu Medical School , Universidade Estadual Paulista, Botucatu, SP, Brazil
,
Eduardo Vieira Barcelos
1   Department of Neurology, Psychology and Psychiatry, Botucatu Medical School , Universidade Estadual Paulista, Botucatu, SP, Brazil
,
1   Department of Neurology, Psychology and Psychiatry, Botucatu Medical School , Universidade Estadual Paulista, Botucatu, SP, Brazil
,
1   Department of Neurology, Psychology and Psychiatry, Botucatu Medical School , Universidade Estadual Paulista, Botucatu, SP, Brazil
,
2   Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
2   Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
2   Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
3   Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Sciences, Universidade Estadual Paulista, Botucatu, Brazil
,
1   Department of Neurology, Psychology and Psychiatry, Botucatu Medical School , Universidade Estadual Paulista, Botucatu, SP, Brazil
,
1   Department of Neurology, Psychology and Psychiatry, Botucatu Medical School , Universidade Estadual Paulista, Botucatu, SP, Brazil
› Institutsangaben

Abstract

Purpose Experimental models might help understand the pathophysiology of neurocysticercosis-associated hydrocephalus. The present study aimed to compare the extent of hydrocephalus and tissue damage in rats with subarachnoid inoculation of different concentrations of Taenia crassiceps cyst proteins.

Methods Sixty young rats were divided into two groups: low- and high-concentration groups. The animals in the low concentration group received 0.02 ml of 2.4 mg/ml T. crassiceps cyst proteins while those in the high concentration group received 0.02 ml of 11.6 mg/ml T. crassiceps cyst proteins. The animals underwent magnetic resonance imaging at 1, 3, and 6 months postinoculation to assess the ventricle volume. Morphological assessment was performed at the end of the observation period.

Results Repeated measures of ventricle volumes at 1, 3, and 6 months showed progressive enlargement of the ventricles. At 1 and 3 months, we observed no differences in ventricle volumes between the 2 groups. However, at 6 months, the ventricles were larger in the high concentration group (median = 3.86 mm3, range: 2.37–12.68) compared with the low concentration group (median = 2.00 mm3, range: 0.37–11.57), p = 0.003. The morphological assessment revealed a few inflammatory features in both groups. However, the density of oligodendrocytes and neurons within the periventricular region was lower in the high concentration group (5.18 versus 9.72 for oligodendrocytes and 15.69 versus 21.00 for neurons; p < 0.001 for both).

Conclusion Our results suggest that, in rats, a higher concentration of T. crassiceps cyst proteins in the subarachnoid space could induce ventricle enlargement and reduce the number of neurons within the periventricular area.

Resumo

Objetivo Modelos experimentais podem ajudar a entender a fisiopatologia da hidrocefalia associada à neurocisticercose. O presente estudo teve como objetivo comparar a extensão da hidrocefalia e dano tecidual em ratos com inoculação subaracnóidea de diferentes concentrações de proteínas de cistos de Taenia crassiceps.

Métodos Sessenta ratos jovens foram divididos em dois grupos: grupos de baixa e alta concentração. Os animais do grupo de baixa concentração receberam 0,02 ml de proteínas de cisto de T. crassiceps (2,4 mg/ml), enquanto os do grupo de alta concentração receberam 0,02 ml de proteínas de cisto de T. crassiceps (11,6 mg/ml). Os animais foram submetidos à ressonância magnética 1, 3 e 6 meses após a inoculação para avaliar o volume do ventrículo. A avaliação morfológica foi realizada no final do período de observação.

Resultados Medidas repetidas dos volumes ventriculares aos 1, 3 e 6 meses mostraram aumento progressivo dos ventrículos. Após 1 e 3 meses, não observamos diferenças nos volumes ventriculares entre os 2 grupos. No entanto, aos 6 meses, os ventrículos foram maiores no grupo de alta concentração (mediana = 3,86 mm3, variação: 2,37–12,68) em comparação com o grupo de baixa concentração (mediana = 2,00 mm3, variação: 0,37–11,57; p = 0,003). A avaliação morfológica revelou algumas características inflamatórias nos dois grupos. No entanto, a densidade de oligodendrócitos e neurônios na região periventricular foi menor no grupo de alta concentração (5,18 versus 9,72 para oligodendrócitos e 15,69 versus 21,00 para neurônios; p < 0,001 para ambos).

Conclusão Nossos resultados sugerem que, em ratos, uma maior concentração de proteínas do cisto de T. crassiceps no espaço subaracnóideo poderia induzir o aumento do ventrículo e reduzir o número de neurônios na área periventricular.



Publikationsverlauf

Eingereicht: 03. Juli 2020

Angenommen: 24. August 2020

Artikel online veröffentlicht:
26. November 2020

© 2020. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 World Health Organization, Taeniasis/cysticercosis [Online]. Available at: http://www.who.int/taeniasis/en/ [Accessed on February 11th, 2020].
  • 2 Coyle CM, Mahanty S, Zunt JR. et al. Neurocysticercosis: neglected but not forgotten. PLoS Negl Trop Dis 2012; 6 (05) e1500
  • 3 Fabiani S, Bruschi F. Neurocysticercosis in Europe: Still a public health concern not only for imported cases. Acta Trop 2013; 128 (01) 18-26
  • 4 Gripper LB, Welburn SC. Neurocysticercosis infection and disease-A review. Acta Trop 2017; 166: 218-224
  • 5 Bazan R, Hamamoto Filho PT, Luvizutto GJ. et al. Clinical Symptoms, Imaging Features and Cyst Distribution in the Cerebrospinal Fluid Compartments in Patients with Extraparenchymal Neurocysticercosis. PLoS Negl Trop Dis 2016; 10 (11) e0005115
  • 6 Marcin Sierra M, Arroyo M, Cadena Torres M. et al. Extraparenchymal neurocysticercosis: Demographic, clinicoradiological, and inflammatory features. PLoS Negl Trop Dis 2017; 11 (06) e0005646
  • 7 Kelley R, Duong DH, Locke GE. Characteristics of ventricular shunt malfunctions among patients with neurocysticercosis. Neurosurgery 2002; 50 (04) 757-761 , discussion 761–762
  • 8 Matushita H, Pinto FCG, Cardeal DD, Teixeira MJ. Hydrocephalus in neurocysticercosis. Childs Nerv Syst 2011; 27 (10) 1709-1721
  • 9 Hamamoto Filho PT, Zanini MA, Fleury A. Hydrocephalus in Neurocysticercosis: Challenges for Clinical Practice and Basic Research Perspectives. World Neurosurg 2019; 126: 264-271
  • 10 de Oliveira RS, Viana DC, Colli BO, Rajshekhar V, Salomão JFM. Pediatric neurocysticercosis. Childs Nerv Syst 2018; 34 (10) 1957-1965
  • 11 Fleury A, Escobar A, Fragoso G, Sciutto E, Larralde C. Clinical heterogeneity of human neurocysticercosis results from complex interactions among parasite, host and environmental factors. Trans R Soc Trop Med Hyg 2010; 104 (04) 243-250
  • 12 Hamamoto Filho PT, Fabro AT, Rodrigues MV. et al. Taenia crassiceps injection into the subarachnoid space of rats simulates radiological and morphological features of racemose neurocysticercosis. Childs Nerv Syst 2017; 33 (01) 119-123
  • 13 Willms K, Zurabian R. Taenia crassiceps: in vivo and in vitro models. Parasitology 2010; 137 (03) 335-346
  • 14 Weibel ER, Kistler GS, Scherle WF. Practical stereological methods for morphometric cytology. J Cell Biol 1966; 30 (01) 23-38
  • 15 Fleury A, Sciutto E, de Aluja A, Carpio A. Cysticercosis: A Preventable, but Embarrassing Neglected Disease Still Prevalent in Non-Developed Countries. In: Sing A. (eds) Zoonoses - Infections Affecting Humans and Animals. Springer; Dordrecht: 2015
  • 16 Nash TE, Singh G, White AC. et al. Treatment of neurocysticercosis: current status and future research needs. Neurology 2006; 67 (07) 1120-1127
  • 17 Hamamoto Filho PT, Fogaroli MO, Oliveira MAC. et al. A Rat Model of Neurocysticercosis-Induced Hydrocephalus: Chronic Progressive Hydrocephalus with Mild Clinical Impairment. World Neurosurg 2019; 132: e535-e544
  • 18 Zepeda N, Copitin N, Chávez JL. et al. Hippocampal sclerosis induced in mice by a Taenia crassiceps metacestode factor. J Helminthol 2019; 93 (06) 690-696
  • 19 Fleury A, Carrillo-Mezo R, Flisser A, Sciutto E, Corona T. Subarachnoid basal neurocysticercosis: a focus on the most severe form of the disease. Expert Rev Anti Infect Ther 2011; 9 (01) 123-133
  • 20 White Jr AC, Coyle CM, Rajshekhar V. et al. Diagnosis and Treatment of Neurocysticercosis: 2017 Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin Infect Dis 2018; 66 (08) 1159-1163
  • 21 Madrazo I, García-Rentería JA, Sandoval M, López Vega FJ. Intraventricular cysticercosis. Neurosurgery 1983; 12 (02) 148-152
  • 22 Jiménez-Vázquez OH, Nagore N. Endoscopic evidence of ventricular and cisternal inflammatory changes after intraoperative cysticercal rupture during endoscopic third-ventriculostomy removal. Br J Neurosurg 2013; 27 (01) 137-138
  • 23 Psarros TG, Krumerman J, Coimbra C. Endoscopic management of supratentorial ventricular neurocysticercosis: case series and review of the literature. Minim Invasive Neurosurg 2003; 46 (06) 331-334
  • 24 Bergsneider M, Holly LT, Lee JH, King WA, Frazee JG. Endoscopic management of cysticercal cysts within the lateral and third ventricles. J Neurosurg 2000; 92 (01) 14-23
  • 25 Kaif M, Husain M, Ojha BK. Endoscopic Management of Intraventricular Neurocysticercosis. Turk Neurosurg 2019; 29 (01) 59-65
  • 26 Ozek MM. Complications of central nervous system hydatid disease. Pediatr Neurosurg 1994; 20 (01) 84-91
  • 27 Tuzun Y, Solmaz I, Sengul G, Izci Y. The complications of cerebral hydatid cyst surgery in children. Childs Nerv Syst 2010; 26 (01) 47-51
  • 28 Ramirez-Bermudez J, Higuera J, Sosa AL, Lopez-Meza E, Lopez-Gomez M, Corona T. Is dementia reversible in patients with neurocysticercosis?. J Neurol Neurosurg Psychiatry 2005; 76 (08) 1164-1166
  • 29 Ciampi de Andrade D, Rodrigues CL, Abraham R. et al. Cognitive impairment and dementia in neurocysticercosis: a cross-sectional controlled study. Neurology 2010; 74 (16) 1288-1295
  • 30 Rodrigues CL, de Andrade DC, Livramento JA. et al. Spectrum of cognitive impairment in neurocysticercosis: differences according to disease phase. Neurology 2012; 78 (12) 861-866
  • 31 Moura VBL, Milhomem AC, Lima SB. et al. Demyelination in experimental intraventricular neurocysticercosis. Arq Neuropsiquiatr 2020; 78 (02) 103-111
  • 32 McAllister II JP. Neuronal damage in hydrocephalus. J Neurosurg 2006; 104 (05) 297-298 , discussion 298
  • 33 Hamamoto Filho PT, Moreira CAA, Generoso D, Alves Júnior AC, Zanini MA. Experimental neurocysticercosis and demyelination. Arq Neuropsiquiatr. 2020 . Ahead of print
  • 34 Gripper LB, Welburn SC. The causal relationship between neurocysticercosis infection and the development of epilepsy - a systematic review. Infect Dis Poverty 2017; 6 (01) 31
  • 35 Carpio A, Fleury A, Romo ML, Abraham R. Neurocysticercosis: the good, the bad, and the missing. Expert Rev Neurother 2018; 18 (04) 289-301
  • 36 Singh G, Sander JW. Neurocysticercosis as a probable risk factor for hippocampal sclerosis. Arq Neuropsiquiatr 2018; 76 (11) 783-790
  • 37 Parkhouse RME, Carpio A, Cortez MM, von Kriegsheim A, Fesel C. Anti-brain protein autoantibodies are detectable in extraparenchymal but not parenchymal neurocysticercosis. J Neuroimmunol 2020; 344: 577234