Synlett 2022; 33(18): 1813-1818
DOI: 10.1055/s-0040-1719866
cluster
Development and Applications of Novel Ligands/Catalysts and Mechanistic Studies on Catalysis

Claisen Rearrangement Triggered by Brønsted Acid Catalyzed Alkyne Alkoxylation

Yao-Hong Yan
a   College of Chemistry &Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China
,
Long Li
a   College of Chemistry &Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China
,
Long-Wu Ye
b   The Key Laboratory for Chemical Biology of Fujian Province & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China
c   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
We are grateful for the financial support from the National Natural Science Foundation of China (22125108, 92056104 and 21772161) and from Wenzhou University.


Abstract

Over the past two decades, catalytic alkyne alkoxylation-initiated Claisen rearrangement has proven to be a practical and powerful strategy for the rapid assembly of a diverse range of structurally complex molecules. The rapid development of Claisen rearrangements triggered by transition-metal-catalyzed alkyne alkoxylation has shown great potential in the formation of carbon–carbon bonds in an atom-economic and mild way. However, metal-free alkyne alkoxylation-triggered Claisen rearrangement has seldom been exploited. Recently, Brønsted acids such as HNTf2 and HOTf have been shown to be powerful activators that promote catalytic alkyne alkoxylation/Claisen rearrangement, leading to the concise and flexible synthesis of valuable compounds with high efficiency and atom economy. Recent advances on the Brønsted acid catalyzed alkyne alkoxylation/Claisen rearrangement are introduced in this Account, in which both intramolecular and intermolecular tandem reactions are discussed.



Publication History

Received: 13 November 2021

Accepted after revision: 13 December 2021

Article published online:
13 January 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For recent selected reviews, see:
    • 1a Gajewski JJ. Acc. Chem. Res. 1997; 30: 219
    • 1b Ito H, Taguchi T. Chem. Soc. Rev. 1999; 28: 43
    • 1c Hiersemann M, Abraham L. Eur. J. Org. Chem. 2002; 1461
    • 1d Martín Castro AM. Chem. Rev. 2004; 104: 2939
    • 1e Hiratani K, Albrecht M. Chem. Soc. Rev. 2008; 37: 2413
    • 1f Ilardi EA, Stivala CE, Zakarian A. Chem. Soc. Rev. 2009; 38: 3133
    • 1g Tejedor D, Méndez-Abt G, Cotos L, García-Tellado F. Chem. Soc. Rev. 2013; 42: 458

      For a recent review, see:
    • 2a Shi C.-Y, Li L, Kang W, Zhang Y.-X, Ye L.-W. Coord. Chem. Rev. 2021; 446: 214131
    • 2b Fürstner A, Davies PW. J. Am. Chem. Soc. 2005; 127: 15024
    • 2c Bae HJ, Baskar B, An SE, Cheong JY, Thangadurai DT, Hwang I.-C, Rhee YH. Angew. Chem. Int. Ed. 2008; 47: 2263
    • 2d Ueda M, Sato A, Ikeda Y, Miyoshi T, Naito T, Miyata O. Org. Lett. 2010; 12: 2594
    • 2e Grimster NP, Wilton DA. A, Chan LK. M, Godfrey CR. A, Green C, Owen DR, Gaunt MJ. Tetrahedron 2010; 66: 6429
    • 2f Ting C.-M, Wang C.-D, Chaudhuri R, Liu R.-S. Org. Lett. 2011; 13: 1702
    • 2g Istrate FM, Gagosz F. Beilstein J. Org. Chem. 2011; 7: 878
    • 2h Wang Y, Ye L, Zhang L. Chem. Commun. 2011; 47: 7815
    • 2i Lu B, Li Y, Wang Y, Aue DH, Luo Y, Zhang L. J. Am. Chem. Soc. 2013; 135: 8512
    • 2j Ketcham JM, Biannic B, Aponick A. Chem. Commun. 2013; 49: 4157
    • 2k Wang Y, Liu L, Zhang L. Chem. Sci. 2013; 739
    • 2l Gómez-Suárez A, Gasperini D, Vummaleti SV. C, Poater A, Cavallo L, Nolan SP. ACS Catal. 2014; 4: 2701
    • 2m Barrett MJ, Davies PW, Grainger RS. Org. Biomol. Chem. 2015; 13: 8676
    • 2n Zhou B, Li L, Zhu X.-Q, Yan J.-Z, Guo Y.-L, Ye L.-W. Angew. Chem. Int. Ed. 2017; 56: 4015
    • 2o Zhou B, Li L, Liu X, Tan T.-D, Liu J, Ye L.-W. J. Org. Chem. 2017; 82: 10149
    • 2p Li J, Lin L, Hu B, Zhou P, Huang T, Liu X, Feng X. Angew. Chem. Int. Ed. 2017; 56: 885
    • 2q Liu C, Xu J, Ding L, Zhang H, Xue Y, Yang F. Org. Biomol. Chem. 2019; 17: 4435
    • 2r Zhou W, Voituriez A. Org. Lett. 2021; 23: 247

      For recent selected reviews, see:
    • 3a Akiyama T, Mori K. Chem. Rev. 2015; 115: 9277
    • 3b Wang Y.-B, Tan B. Acc. Chem. Res. 2018; 51: 534
    • 3c Zhao W, Sun J. Chem. Rev. 2018; 118: 10349
    • 3d Maji R, Mallojjala SC, Wheeler SE. Chem. Soc. Rev. 2018; 47: 1142
    • 3e Schreyer L, Properzi R, List B. Angew. Chem. Int. Ed. 2019; 58: 12761
    • 3f Chen Y.-B, Qian P.-C, Ye L.-W. Chem. Soc. Rev. 2020; 49: 8897
  • 4 Li L, Zhu X.-Q, Zhang Y.-Q, Bu H.-Z, Yuan P, Chen J, Su J, Deng X, Ye L.-W. Chem. Sci. 2019; 10: 3123

    • For recent reviews on ynamide reactivity, see:
    • 5a Wang X.-N, Yeom H.-S, Fang L.-C, He S, Ma Z.-X, Kedrowski BL, Hsung RP. Acc. Chem. Res. 2014; 47: 560
    • 5b Evano G, Theunissen C, Lecomte M. Aldrichimica Acta 2015; 48: 59
    • 5c Zhou B, Tan T.-D, Zhu X.-Q, Shang M, Ye L.-W. ACS Catal. 2019; 9: 6393
    • 5d Hong F.-L, Ye L.-W. Acc. Chem. Res. 2020; 53: 2003
    • 5e Luo J, Chen G.-S, Chen S.-J, Yu J.-S, Li Z.-D, Liu Y.-L. ACS Catal. 2020; 10: 13978
    • 5f Lynch CC, Sripada A, Wolf C. Chem. Soc. Rev. 2020; 49: 8543
    • 5g Hu Y.-C, Zhao Y, Wan B, Chen Q.-A. Chem. Soc. Rev. 2021; 50: 2582
  • 6 Zhang Y.-Q, Zhu X.-Q, Xu Y, Bu H.-Z, Wang J.-L, Zhai T.-Y, Zhou J.-M, Ye L.-W. Green Chem. 2019; 21: 3023
    • 7a Chen P.-F, Zhou B, Wu PWang B, Ye L.-W. Angew. Chem. Int. Ed. 2021; 60: 27164
    • 7b Zhou B, Zhang Y.-Q, Zhang K, Yang M.-Y, Chen Y.-B, Li Y, Peng Q, Zhu S.-F, Zhou Q.-L, Ye L.-W. Nat. Commun. 2019; 10: 3234
  • 8 Mulder JA, Hsung RP, Frederick MO, Tracey MR, Zificsak CA. Org. Lett. 2002; 4: 1383
  • 9 Frederick MO, Hsung RP, Lambeth RH, Mulder JA, Tracey MR. Org. Lett. 2003; 5: 2663
  • 10 Peng B, Huang X, Xie L.-G, Maulide N. Angew. Chem. Int. Ed. 2014; 53: 8718
  • 11 Hu L, Gui Q, Chen X, Tan Z, Zhu G. J. Org. Chem. 2016; 81: 4861
  • 12 Baldassari LL, Mantovani AC, Senoner S, Maryasin B, Maulide N, Lüdtke DS. Org. Lett. 2018; 20: 5881
  • 13 Kaiser D, Veiros LF, Maulide N. Adv. Synth. Catal. 2017; 359: 64
  • 14 Kaldre D, Klose I, Maulide N. Science 2018; 361: 664