Synthesis 2022; 54(09): 2148-2156
DOI: 10.1055/s-0040-1719892
feature

Brønsted Acid Catalyzed Direct Annulation of Alkoxyallenes and Naphthols to Chroman Ketals

Maosheng He
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Jinlong Zhang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
,
Cong Zhang
c   Institute of Advanced Materials, Key Laboratory of Flexible Electronics, Nanjing Tech University, Dingjiaqiao Campus, XinMoFanMaLu No. 5, 210000 Nanjing, P. R. of China
,
Hao-Yang Wang
d   Laboratory of Mass Spectrometry Analysis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
,
Gaoxi Jiang
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
› Author Affiliations
Financial support from the National Natural Science Foundation of China (21602231, 21772227) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20191197) is gratefully acknowledged.


Abstract

A straightforward Brønsted acid-catalyzed and scalable annulation of alkoxyallenes with simple naphthols was developed, affording chroman ketals in 49–84% yields. The versatile chroman ketals can be easily converted into coumarins by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-mediated oxidation, and a series of 2-substituted chromans via nucleophilic substitutions.

Supporting Information



Publication History

Received: 01 December 2021

Accepted after revision: 20 December 2021

Article published online:
14 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Ahn S, Hong M, Sundararajan M, Ess DH, Baik MH. Chem. Rev. 2019; 119: 6509
    • 1b Dauth A, Love JA. Chem. Rev. 2011; 111: 2010
    • 1c Transition Metals in Organic Synthesis: A Practical Approach. Gibson SE. Oxford University Press; Oxford: 1997
    • 3a Yang Z, Wang Z. Angew. Chem. Int. Ed. 2021; 60: 27288
    • 3b Jang D.-J, Lee S, Lee J, Moon D, Rhee YH. Angew. Chem. Int. Ed. 2021; 60: 22166
    • 3c Zheng J, Nikbakht A, Breit B. ACS Catal. 2021; 11: 3343
    • 3d Jiang L, Jia T, Wang M, Liao J, Cao P. Org. Lett. 2015; 17: 1070
    • 3e Lim W, Kim J, Rhee YH. J. Am. Chem. Soc. 2014; 136: 13618
    • 3f Kim H, Lim W, Im D, Kim DG, Rhee YH. Angew. Chem. Int. Ed. 2012; 51: 12055
    • 3g Kim H, Rhee YH. J. Am. Chem. Soc. 2012; 134: 4011
    • 3h Trost BM, Xie J, Sieber JD. J. Am. Chem. Soc. 2011; 133: 20611
    • 3i Trost BM, Jäkel C, Plietker B. J. Am. Chem. Soc. 2003; 125: 4438
    • 3j Trost BM, Simas AB. C, Plietker B, Jäkel C, Xie J. Chem. Eur. J. 2005; 11: 7075
    • 3k Trost BM, Xie J. J. Am. Chem. Soc. 2006; 128: 6044
    • 3l Trost BM, Xie J. J. Am. Chem. Soc. 2008; 130: 6231
  • 4 Zhou H, Wei Z, Zhang J, Yang H, Xia C, Jiang G. Angew. Chem. Int. Ed. 2017; 56: 1077
    • 5a Harvey RG, Cortez C, Ananthanarayan TP, Sanford S. J. Org. Chem. 1988; 53: 3936
    • 5b Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Chem. Rev. 2019; 119: 10403
    • 5c Santos-Figueroa LE, Moragues ME, Climent E, Agostini A, Martínez-Máñez R, Sancenón F. Chem. Soc. Rev. 2013; 42: 3489
  • 6 Pratap R, Ram VJ. Chem. Rev. 2014; 114: 10476
    • 7a Gao Z, Yan C.-X, Qian J, Yang H, Zhou P, Zhang J, Jiang G. ACS Catal. 2021; 11: 6931
    • 7b Zhang J, Zhu L, Shen K, Yang H, Hang X.-C, Jiang G. Chem. Sci. 2019; 10: 1070