Synlett 2022; 33(14): 1468-1472
DOI: 10.1055/s-0040-1719897
cluster
Organic Chemistry in Thailand

Direct Synthesis of N-Monosubstituted Benzimidazol-2-ones via Ph3P–I2-Mediated Reaction of Hydroxamic Acids

Nittaya Wiriya
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
,
Dolnapa Yamano
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
,
Surat Hongsibsong
b   Environmental, Occupational Health Sciences and Non Communicable Diseases Center of Excellence, Chiang Mai University, Chiang Mai, 50200, Thailand
c   School of Health Science Research, Research Institute for Health Science, Chiang Mai University, Chiang Mai, 50200, Thailand
,
Mookda Pattarawarapan
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
b   Environmental, Occupational Health Sciences and Non Communicable Diseases Center of Excellence, Chiang Mai University, Chiang Mai, 50200, Thailand
d   Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
,
a   Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
b   Environmental, Occupational Health Sciences and Non Communicable Diseases Center of Excellence, Chiang Mai University, Chiang Mai, 50200, Thailand
d   Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
› Author Affiliations
This work is partially supported by Chiang Mai University, Thailand and the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program [PHD/0072/2559 (N.W.) and PHD/0023/2559 (D.Y.)].


Abstract

A facile approach for the synthesis of benzimidazolones via a Ph3P–I2 promoted reaction of hydroxamic acids is reported. Upon Lossen-type rearrangement of the O-activated hydroxamic acids, the in situ generated isocyanates undergo an intramolecular attack by ortho N-nucleophiles producing the cyclized products in good yields under mild conditions. The method allows the direct preparation of a single regioisomer of N-monosubstituted derivatives using readily accessible starting materials and low-cost reagents with broad substrate scope.

Supporting Information



Publication History

Received: 23 December 2021

Accepted after revision: 26 January 2022

Article published online:
14 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Kamal A, Reddy KL, Devaiah V, Shankaraiah N, Rao MV. Mini-Rev. Med. Chem. 2006; 6: 71
    • 1b Zhan P, Li D, Li J, Chen X, Liu X. Mini-Rev. Org. Chem. 2012; 9: 397
    • 2a Patel V, Bhatt N, Bhatt P, Joshi HD. Med. Chem. Res. 2014; 23: 2133
    • 2b Sree Ram Babu J, Ravi Sankar T, Sudhakar Babu K, Latha J. J. Chem. Pharm. Res. 2014; 6: 479
    • 3a Adardour M, Boutafda A, Hdoufane I, Aghraz A, Hafidi M, Zaballos-Garcia E, Cherqaoui D, Baouid A. Synth. Commun. 2020; 50: 3490
    • 3b Li S.-K, Ji Z.-Q, Zhang J.-W, Guo Z.-Y, Wu W.-J. J. Agric. Food Chem. 2010; 58: 2668
    • 4a Barreca ML, Rao A, De Luca L, Iraci N, Monforte A.-M, Maga G, De Clercq E, Pannecouque C, Balzarini J, Chimirri A. Bioorg. Med. Chem. Lett. 2007; 17: 1956
    • 4b Kanwal A, Ahmad M, Aslam S, Naqvi SA. R, Saif MJ. Pharm. Chem. J. 2019; 53: 179
    • 4c Monforte A.-M, Logoteta P, De Luca L, Iraci N, Ferro S, Maga G, De Clercq E, Pannecouque C, Chimirri A. Bioorg. Med. Chem. 2010; 18: 1702
    • 4d Monforte A.-M, Logoteta P, Ferro S, De Luca L, Iraci N, Maga G, De Clercq E, Pannecouque C, Chimirri A. Bioorg. Med. Chem. 2009; 17: 5962
  • 5 Howard HR, Sarges R, Siegel TW, Beyer TA. Eur. J. Med. Chem. 1992; 27: 779
    • 6a Omura H, Kawai M, Shima A, Iwata Y, Ito F, Masuda T, Ohta A, Makita N, Omoto K, Sugimoto H, Kikuchi A, Iwata H, Ando K. Bioorg. Med. Chem. Lett. 2008; 18: 3310
    • 6b Palin R, Clark JK, Evans L, Houghton AK, Jones PS, Prosser A, Wishart G, Yoshiizumi K. Bioorg. Med. Chem. 2008; 16: 2829
    • 7a Bellenie BR, Cheung K.-MJ, Varela A, Pierrat OA, Collie GW, Box GM, Bright MD, Gowan S, Hayes A, Rodrigues MJ, Shetty KN, Carter M, Davis OA, Henley AT, Innocenti P, Johnson LD, Liu M, de Klerk S, Le Bihan Y.-V, Lloyd MG, McAndrew PC, Shehu E, Talbot R, Woodward HL, Burke R, Kirkin V, van Montfort RL. M, Raynaud FI, Rossanese OW, Hoelder S. J. Med. Chem. 2020; 63: 4047
    • 7b Shim HJ, Yang HR, Kim HI, Kang S.-A, No KT, Jung YH, Lee S.-T. Bioorg. Med. Chem. Lett. 2014; 24: 4659
    • 7c Sun Y, Pandit B, Chettiar SN, Etter JP, Lewis A, Johnsamuel J, Li P.-K. Bioorg. Med. Chem. Lett. 2013; 23: 4465
    • 8a Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, Paul AT, Kumar R. J. Med. Chem. 2021; 64: 2339
    • 8b Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
    • 8c Poupaert J, Carato P, Colacino E. Curr. Med. Chem. 2005; 12: 877
    • 9a Omura H, Kawai M, Shima A, Iwata Y, Ito F, Masuda T, Ohta A, Makita N, Omoto K, Sugimoto H, Kikuchi A, Iwata H, Ando K. Bioorg. Med. Chem. Lett. 2008; 18: 3310
    • 9b Zhang P, Terefenko EA, McComas CC, Mahaney PE, Vu A, Trybulski E, Koury E, Johnston G, Bray J, Deecher D. Bioorg. Med. Chem. Lett. 2008; 18: 6067
    • 9c Yu B, Zhang H, Zhao Y, Chen S, Xu J, Hao L, Liu Z. ACS Catal. 2013; 3: 2076
    • 9d Laurin CM. C, Bluck JP, Chan AK. N, Keller M, Boczek A, Scorah AR, See KF. L, Jennings LE, Hewings DS, Woodhouse F, Reynolds JK, Schiedel M, Humphreys PG, Biggin PC, Conway SJ. ACS Infect. Dis. 2021; 7: 2238
    • 9e Troisi L, Granito C, Perrone S, Rosato F. Tetrahedron Lett. 2011; 52: 4330
    • 10a Yu J, Gao C, Song Z, Yang H, Fu H. Eur. J. Org. Chem. 2015; 5869
    • 10b Youn SW, Kim YH. Org. Lett. 2016; 18: 6140
    • 10c Beyer A, Reucher CM. M, Bolm C. Org. Lett. 2011; 13: 2876
    • 10d Li J.-S, Yang P.-P, Xie X.-Y, Jiang S, Tao L, Li Z.-W, Lu C.-H, Liu W.-D. Adv. Synth. Catal. 2020; 362: 1977
    • 10e Li Z, Sun H, Jiang H, Liu H. Org. Lett. 2008; 10: 3263
    • 10f Ernst JB, Tay NE. S, Jui NT, Buchwald SL. Org. Lett. 2014; 16: 3844
  • 11 Mamedov VA, Zhukova NA. Prog. Heterocycl. Chem. 2017; 29: 1
    • 12a Prakash O, Batra H, Kaur H, Sharma PK, Sharma V, Singh SP, Moriarty RM. Synthesis 2001; 541
    • 12b Liu P, Wang Z, Hu X. Eur. J. Org. Chem. 2012; 1994
    • 13a Ruediger EH, Gandhi SS, Gibson MS, Farcasiu D, Uncuta C. Can. J. Chem. 1986; 64: 577
    • 13b Kametani T, Sota K, Shio M. J. Heterocycl. Chem. 1970; 7: 807
    • 13c Singh AS, Agrahari AK, Singh SK, Yadav MS, Tiwari VK. Synthesis 2019; 51: 3443
  • 14 Hershenson FM, Bauer L, King KF. J. Org. Chem. 1968; 33: 2543
  • 15 Eckstein Z, Jadach T, Lipczynska-Kochany E. J. Chem. Eng. Data 1983; 28: 279
    • 16a Shi G.-Q. Tetrahedron Lett. 2000; 41: 2295
    • 16b Deng B.-L, Cullen MD, Zhou Z, Hartman TL, Buckheit RW, Pannecouque C, De Clercq E, Fanwick PE, Cushman M. Bioorg. Med. Chem. 2006; 14: 2366
  • 17 Kreye O, Wald S, Meier MA. R. Adv. Synth. Catal. 2013; 355: 81
  • 18 Meng H, Sun K, Xu Z, Tian L, Wang Y. Eur. J. Org. Chem. 2021; 1768
    • 19a Pattarawarapan M, Wiriya N, Hongsibsong S, Phakhodee W. J. Org. Chem. 2020; 85: 15743
    • 19b Pattarawarapan M, Yamano D, Wiriya N, Phakhodee W. J. Org. Chem. 2019; 84: 6516
    • 19c Pattarawarapan M, Yamano D, Wiriya N, Yimklan S, Phakhodee W. J. Org. Chem. 2020; 85: 13330
    • 19d Phakhodee W, Wangngae S, Pattarawarapan M. J. Org. Chem. 2017; 82: 8058
    • 19e Wangngae S, Pattarawarapan M, Phakhodee W. J. Org. Chem. 2017; 82: 10331
    • 19f Wet-osot S, Phakhodee W, Pattarawarapan M. J. Org. Chem. 2017; 82: 9923
  • 20 General Procedure for the Synthesis of Hydroxamic Acid 1To a solution of N-substituted isatoic anhydride (0.613 mmol) in ethanol (5 mL) was added hydroxylamine hydrochloride (1.839 mmol) and sodium hydroxide (3.06 mmol) at 0 °C. After that, a few drops of water were added, and the reaction mixture was sonicated for 5 min before stirring at room temperature for 2–4 h. The crude mixture was concentrated under reduced pressure before dissolving in water. The pH was adjusted to 7 using 1 M HCl then extracted with EtOAc (3 × 10 mL). The combined organic layer was dried over anhydrous Na2SO4 before concentrated and purified by column chromatography (CC) using ethyl acetate/hexanes as the eluent. N-Hydroxy-2-[(4-vinylbenzyl)amino]benzamide (1a)White solid; mp 146–147 °C. 1H NMR (500 MHz, CDCl3): δ = 8.52 (s, 1 H), 7.34 (d, J = 8.5 Hz, 2 H), 7.30–7.25 (m, 4 H), 6.68 (dd, J = 17.5, 11.0 Hz, 1 H), 6.63 (dd, J = 8.5, 1.0 Hz, 1 H), 6.59 (td, J = 7.4, 1.0 Hz, 1 H), 5.71 (dd, J = 17.5, 1.0 Hz, 1 H), 5.22 (dd, J = 11.0, 1.0 Hz, 1 H), 4.38 (s, 2 H). 13C{1H} NMR (125 MHz, CDCl3): δ = 169.5, 149.3, 138.4, 136.6, 136.5, 133.8, 127.3, 127.0, 126.5, 115.5, 113.7, 112.4, 111.3, 46.9.
    • 21a Thomas M, Alsarraf J, Araji N, Tranoy-Opalinski I, Renoux B, Papot S. Org. Biomol. Chem. 2019; 17: 5420
    • 21b Dube P, Nathel NF. F, Vetelino M, Couturier M, Aboussafy CL, Pichette S, Jorgensen ML, Hardink M. Org. Lett. 2009; 11: 5622
    • 21c Hamon F, Prie G, Lecornue F, Papot S. Tetrahedron Lett. 2009; 50: 6800
  • 22 General Procedure for the Synthesis of Benzimidazolones 2To a solution of iodine (0.1514 g, 0.597 mmol) and triphenylphosphine (0.1566 g, 0.597 mmol) in freshly distilled dichloromethane (3 mL) was added hydroxamic acid 1 (0.398 mmol) at 0 °C under N2. After mixing for 5 min, triethylamine (0.22 mL, 1.59 mmol) was added before warming up to room temperature with continuous stirring. After completion of the reaction (2–16 h), the crude mixture was concentrated under reduced pressure before purification by column chromatography (CC) using ethyl acetate/hexanes as the eluent. Note: Six new compounds including 2af were fully characterized, while the spectral data of other known products were matched with the previously reported data. 1-(4-Vinylbenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (2a, Scheme [2])White solid (0.0817 g, 82% yield); mp 179–180 °C;Rf = 0.36 (40% EtOAc/hexanes). 1H NMR (500 MHz, CDCl3): δ = 9.63 (s, 1 H), 7.36 (d, J = 8.5 Hz, 2 H), 7.29 (d, J = 8.5 Hz, 2 H), 7.11 (dd, J = 8.0, 1.5 Hz, 1 H), 7.02 (td, J = 8.0, 1.5 Hz, 1 H), 6.99 (td, J = 8.0, 1.5 Hz, 1 H), 6.86 (d, J = 8.0 Hz, 1 H), 6.68 (dd, J = 17.5, 11.0 Hz, 1 H), 5.71 (dd, J = 17.5, 1.0 Hz, 1 H), 5.23 (dd, J = 11.0, 1.0 Hz, 1 H), 5.08 (s, 2 H). 13C NMR{1H} (125 MHz, CDCl3): δ = 155.6, 137.1, 136.3, 135.7, 130.2, 127.9, 127.6, 126.6, 121.7, 121.4, 114.1, 109.6, 108.6, 44.3. HRMS (ESI/QTOF): m/z [M + H]+ calcd for C16H15N2O: 251.1179; found: 251.1183.6 -Methyl-1-(4-vinylbenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (2b, Scheme [2])White solid(0.0915 g, 87% yield); mp 179–181 °C;Rf = 0.35 (40% EtOAc/hexanes). 1H NMR (500 MHz, CDCl3): δ = 9.11 (s, 1 H), 7.35 (d, J = 8.0 Hz, 2 H), 7.27 (d, J = 8.0 Hz, 3 H), 6.92 (s, 1 H), 6.80 (d, J = 8.0 Hz, 1 H), 6.72 (d, J = 8.0 Hz, 1 H), 6.67 (dd, J = 17.5, 11.0 Hz, 1 H), 5.71 (dd, J = 17.5, 1.0 Hz, 1 H), 5.22 (dd, J = 11.0, 1.0 Hz, 1 H), 5.05 (s, 2 H), 2.34 (s, 3 H). 13C NMR{1H} (125 MHz, CDCl3): δ = 155.5, 137.1, 136.3, 135.8, 131.6, 128.01, 127.88, 127.6, 126.6, 122.0, 114.1, 110.1, 108.3, 44.3, 21.4. HRMS (ESI/QTOF): m/z [M + H]+ calcd for C17H17N2O: 265.1335; found: 265.1335.5-Chloro-1-(4-vinylbenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (2c, Scheme [2])White solid(0.0884 g, 78% yield); mp 185–186 °C;Rf = 0.36 (40% EtOAc/hexanes). 1H NMR (500 MHz, CDCl3): δ = 9.78 (s, 1 H), 7.37 (d, J = 8.0 Hz, 2 H), 7.27 (d, J = 8.0 Hz, 2 H), 7.11 (d, J = 2.0 Hz, 1 H), 6.97 (dd, J = 8.5, 2.0 Hz, 1 H), 6.75 (d, J = 8.5 Hz, 1 H), 6.68 (dd, J = 17.5, 11.0 Hz, 1 H), 5.72 (dd, J = 17.5, 1.0 Hz, 1 H), 5.24 (dd, J = 11.0, 1.0 Hz, 1 H), 5.05 (s, 2 H). 13C NMR{1H} (125 MHz, CDCl3): δ = 155.5, 137.3, 136.2, 135.2, 128.73, 128.69, 127.6, 127.3, 126.7, 121.5, 114.3, 110.1, 109.3, 44.4. HRMS (ESI/QTOF): m/z [M + H]+ calcd for C16H14ClN2O: 285.0789; found: 285.0791.5-Fluoro-1-(4-vinylbenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (2d, Scheme [2])White solid(0.0694 g, 65% yield); mp 160–161 °C;Rf = 0.38 (40% EtOAc/hexanes). 1H NMR (500 MHz, CDCl3): δ = 9.70 (s, 1 H), 7.37 (d, J = 8.5 Hz, 2 H), 7.27 (d, J = 8.5 Hz, 2 H), 6.87 (dd, J = 8.5, 2.5 Hz, 1 H), 6.76–6.65 (m, 3 H), 5.72 (d, J = 17.5 Hz, 1 H), 5.24 (d, J = 11.0 Hz, 1 H), 5.06 (s, 2 H). 13C NMR{1H} (125 MHz, CDCl3): δ = 159.80, 157.91 (d, 1JCF = 236.6 Hz), 155.8, 137.3, 136.2, 135.3, 128.41, 128.31(d, 3JCF = 12.6 Hz), 127.6, 126.7, 126.3, 114.3, 108.85, 108.78 (d, 3JCF = 9.5 Hz), 108.11, 107.92 (d, 2JCF = 24.0 Hz), 98.08, 97.86 (d, 2JCF = 28.3 Hz), 44.4. HRMS (ESI/QTOF): m/z [M + H]+ calcd for C16H14FN2O: 269.1085; found: 269.1085.5-Nitro-1-(4-vinylbenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (2e, Scheme [2])White solid(0.0586 g, 57% yield); mp 215–216 °C;Rf = 0.35 (40% EtOAc/hexanes). 1H NMR (500 MHz, CDCl3): δ = 10.13 (s, 1 H), 8.03 (s, 1 H), 8.02 (dd, J = 9.5, 2.0 Hz, 1 H), 7.39 (d, J = 8.5 Hz, 2 H), 7.29 (d, J = 8.5 Hz, 2 H), 6.94 (d, J = 8.5 Hz, 1 H), 6.68 (dd, J = 17.5, 11.0 Hz, 1 H), 5.73 (dd, J = 17.5, 1.0 Hz, 1 H), 5.26 (dd, J = 11.0, 1.0 Hz, 1 H), 5.13 (s, 2 H). 13C NMR{1H} (125 MHz, CDCl3): δ = 155.8, 143.0, 137.7, 136.0, 135.1, 134.3, 127.73, 127.68, 126.88, 118.6, 114.7, 107.9, 105.6, 44.8. HRMS (ESI/QTOF): m/z [M + H]+ calcd for C16H14N3O3: 296.1030; found: 296.1028.5,6-Dichloro-1-(4-vinylbenzyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (2f, Scheme [2])White solid(0.1029 g, 81% yield); mp 241–242 °C;Rf = 0.38 (40% EtOAc/hexanes). 1H NMR (500 MHz, CDCl3 + CD3OD): δ = 7.38 (d, J = 8.0 Hz, 2 H), 7.24 (d, J = 8.0 Hz, 1 H), 7.14 (s, 1 H), 6.91 (s, 1 H), 6.69 (dd, J = 17.5, 11.0 Hz, 1 H), 5.73 (dd, J = 17.5, 1.0 Hz, 1 H), 5.25 (dd, J = 11.0, 1.0 Hz, 1 H), 4.99 (s, 2 H). 13C NMR{1H} (125 MHz, CDCl3 + CD3OD): δ = 155.3, 137.4, 136.1, 134.8, 129.6, 127.5, 126.7, 125.3, 124.9, 114.4, 111.0, 109.9, 44.4. HRMS (ESI/QTOF): m/z [M + H]+ calcd for C16H13Cl2N2O: 319.0399; found: 319.0403.
    • 23a Phakhodee W, Yamano D, Pattarawarapan M. Synlett 2020; 31: 703
    • 23b Rezazadeh S, Akhlaghinia B, Razavi N. Aust. J. Chem. 2015; 68: 145
    • 23c Ghodsinia SS. E, Akhlaghinia B. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 1
    • 23d Khadem Moghaddam R, Aghapour G. Phosphorus, Sulfur Silicon Relat. Elem. 2021; 196: 398
    • 23e Singh M, Singh AS, Mishra N, Agrahari AK, Tiwari VK. Synthesis 2019; 51: 2183