CC BY-NC-ND 4.0 · Eur J Dent 2021; 15(02): 369-378
DOI: 10.1055/s-0040-1721235
Review Article

Baseline Specimens of Erosion and Abrasion Studies

1   Centre of Comprehensive Care Studies, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia
,
2   Department of Restorative Dentistry School of Dentistry, Cardiff University, Cardiff, United Kingdom
,
Matthew German
3   School of Dental Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
› Author Affiliations

Abstract

The difficulty in obtaining human teeth that are caries-free that have similar environmental exposure, e.g., diet intake and water fluoridation has lead researchers to opt for bovine teeth as a substitute for erosion studies. Bovine mandibular incisors are readily available at abattoirs and often originate from the same region and are likely to consume similar dietary intake. The bovine teeth for erosion or abrasion studies usually undergo specimen preparation to produce a “flat surface” baseline specimen. Among other terms used to define baseline specimens for erosion and abrasion studies include phrases like “optically flat” and “flat and smooth surface.” However, these terms might have no quantitative value as it does not justify the actual surface characteristics of the prepared flattened surface. In dentistry, roughness average (Ra) is the most commonly used parameter when reporting the roughness of specimens Reporting Ra alone might not be sufficient as it does not provide information regarding the surface texture as there is no distinction between valleys and peaks, nor does it provide information about the core structure of a material unlike the bearing area curve. The incorporation of Ra and BAP values in baseline specimens has the potential in predicting the wear or lubricating potential of these specimens. Furthermore, standardization of baseline specimens by acknowledging its surface roughness values ensures comparability of erosion and abrasion studies as different specimen preparation technique might influence the outcome or results of research.



Publication History

Article published online:
26 December 2020

© 2020. European Journal of Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Wegehaupt FJ, Widmer R, Attin T. Is bovine dentine an appropriate substitute in abrasion studies?. Clin Oral Investig 2010; 14 (02) 201-205
  • 2 Mellberg JR. Hard-tissue substrates for evaluation of cariogenic and anti-cariogenic activity in situ . J Dent Res 1992; 71: 913-919
  • 3 Oesterle LJ, Shellhart WC, Belanger GK. The use of bovine enamel in bonding studies. Am J Orthod Dentofacial Orthop 1998; 114 (05) 514-519
  • 4 Eisenburger M, Addy M. Evaluation of pH and erosion time on demineralisation. Clin Oral Investig 2001; 5 (02) 108-111
  • 5 West NX, Hughes JA, Addy M. Erosion of dentine and enamel in vitro by dietary acids: the effect of temperature, acid character, concentration and exposure time. J Oral Rehabil 2000; 27 (10) 875-880
  • 6 Hemingway CA, Parker DM, Addy M, Barbour ME. Erosion of enamel by non-carbonated soft drinks with and without toothbrushing abrasion. Br Dent J 2006; 201 (07) 447-450, discussion 439, quiz 466
  • 7 Hannig C, Hamkens A, Becker K, Attin R, Attin T. Erosive effects of different acids on bovine enamel: release of calcium and phosphate in vitro . Arch Oral Biol 2005; 50 (06) 541-552
  • 8 Las Casas EB, Bastos FS, Godoy GCD, Buono VTL. Enamel wear and surface roughness characterization using 3D profilometry. Tribol Int 2008; 41 (12) 1232-1236
  • 9 Field J, German M, Waterhouse P. Using bearing area parameters to quantify early erosive tooth surface changes in enamel: a pilot study. J Dent 2013; 41 (11) 1060-1067
  • 10 Nekrashevych Y, Hannig M, Stösser L. Assessment of enamel erosion and protective effect of salivary pellicle by surface roughness analysis and scanning electron microscopy. Oral Health Prev Dent 2004; 2 (01) 5-11
  • 11 Bayrak S, Tuloglu N, Bicer H, Sen Tunc E. Effect of fluoride varnish containing CPP-ACP on preventing enamel erosion. Scanning 2017; 2017: 1897825
  • 12 Hughes JA, West NX, Parker DM. van den Braak MH, Addy M. Effects of pH and concentration of citric, malic and lactic acids on enamel, in vitro. J Dent 2000; 28 (02) 147-152
  • 13 Zhou SL, Zhou J, Watanabe S, Watanabe K, Wen LY, Xuan K. In vitro study of the effects of fluoride-releasing dental materials on remineralization in an enamel erosion model. J Dent 2012; 40 (03) 255-263
  • 14 Ganss C, Klimek J, Schwarz N. A comparative profilometric in vitro study of the susceptibility of polished and natural human enamel and dentine surfaces to erosive demineralization. Arch Oral Biol 2000; 45 (10) 897-902
  • 15 Wongkhantee S, Patanapiradej V, Maneenut C, Tantbirojn D. Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J Dent 2006; 34 (03) 214-220
  • 16 Gonçalves GKM, Guglielmi CdeA, Corrêa FNP, Raggio DP, Corrêa MSNP. Erosive potential of different types of grape juices. Braz Oral Res 2012; 26 (05) 457-463
  • 17 Mita H, Kitasako Y, Takagaki T, Sadr A, Tagami J. Development and evaluation of a low-erosive apple juice drink with phosphoryl-oligosaccharides of calcium. Dent Mater J 2013; 32 (02) 212-218
  • 18 Rodrigues MC, Mondelli RFL, Oliveira GU, Franco EB, Baseggio W, Wang L. Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments. J Appl Oral Sci 2013; 21 (02) 112-117
  • 19 Shellis RP, Ganss C, Ren Y, Zero DT, Lussi A. Methodology and models in erosion research: discussion and conclusions. Caries Res 2011; 45 (Suppl. 01) 69-77
  • 20 Wang C, Li Y, Wang X. Zhang L, Tiantang, Fu B. The enamel microstructures of bovine mandibular incisors. Anat Rec (Hoboken) 2012; 295 (10) 1698-1706
  • 21 Takagi S, Liao H, Chow LC. Effect of tooth-bound fluoride on enamel demineralization/ remineralization in vitro. Caries Res 2000; 34 (04) 281-288
  • 22 Abuabara A, Santos AJ, Aguiar FH, Lovadino JR. Evaluation of microleakage in human, bovine and swine enamels. Braz Oral Res 2004; 18 (04) 312-316
  • 23 Edmunds DH, Whittaker DK, Green RM. Suitability of human, bovine, equine, and ovine tooth enamel for studies of artificial bacterial carious lesions. Caries Res 1988; 22 (06) 327-336
  • 24 Featherstone JDB, Mellberg JR. Relative rates of progress of artificial carious lesions in bovine, ovine and human enamel. Caries Res 1981; 15 (01) 109-114
  • 25 Poole DFG, Shellis RP, Tyler JE. Rates of formation in vitro of dental caries-like enamel lesions in man and some non-human primates. Arch Oral Biol 1981; 26 (05) 413-417
  • 26 Wiegand A, Attin T. Design of erosion/abrasion studies—insights and rational concepts. Caries Res 2011; 45 (Suppl. 01) 53-59
  • 27 Turssi CP, Messias DF, Corona SM, Serra MC. Viability of using enamel and dentin from bovine origin as a substitute for human counterparts in an intraoral erosion model. Braz Dent J 2010; 21 (04) 332-336
  • 28 Zero DT. In situ caries models. Adv Dent Res 1995; 9 (03) 214-230, discussion 231–234
  • 29 Laurance-Young P, Bozec L, Gracia L. et al. A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisation. J Dent 2011; 39 (04) 266-272
  • 30 Pamecha S, Dayakara HR. Comparative measurement of mesiodistal width of six anterior maxillary and mandibular teeth in Rajasthan population. J Indian Prosthodont Soc 2012; 12 (02) 81-86
  • 31 Ren YF, Zhao Q, Malmstrom H, Barnes V, Xu T. Assessing fluoride treatment and resistance of dental enamel to soft drink erosion in vitro: applications of focus variation 3D scanning microscopy and stylus profilometry. J Dent 2009; 37 (03) 167-176
  • 32 Newman HN, Poole DFG. Observations with scanning and transmission electron microscopy on the structure of human surface enamel. Arch Oral Biol 1974; 19 (12) 1135-1143
  • 33 Lippert F, Parker DM, Jandt KD. In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J Colloid Interface Sci 2004; 280 (02) 442-448
  • 34 Lussi A, Kohler N, Zero D, Schaffner M, Megert B. A comparison of the erosive potential of different beverages in primary and permanent teeth using an in vitro model. Eur J Oral Sci 2000; 108 (02) 110-114
  • 35 Hegedüs C, Bistey T, Flóra-Nagy E, Keszthelyi G, Jenei A. An atomic force microscopy study on the effect of bleaching agents on enamel surface. J Dent 1999; 27 (07) 509-515
  • 36 Huysmans MC, Thijssen JM. Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?. J Dent 2000; 28 (03) 187-191
  • 37 Ceci M, Mirando M, Beltrami R, Chiesa M, Poggio C. Protective effect of casein phosphopeptide-amorphous calcium phosphate on enamel erosion: atomic force microscopy studies. Scanning 2015; 37 (05) 327-334
  • 38 Jameel RA, Khan SS, Abdul ZH Rahim, Bakri MM, Siddiqui S. Analysis of dental erosion induced by different beverages and validity of equipment for identifying early dental erosion, in vitro study. J Pak Med Assoc 2016; 66 (07) 843-848
  • 39 Amaechi BT, Higham SM, Edgar WM. Factors influencing the development of dental erosion in vitro: enamel type, temperature and exposure time. J Oral Rehabil 1999; 26 (08) 624-630
  • 40 Cherian TS, Subramaniam P, Gupta M. Erosive effect of milk, honey, cereal porridge, and millet porridge on enamel of primary teeth: an in vitro study. Indian J Dent Res 2020; 31 (01) 129-133
  • 41 Giannini M, Soares CJ, de Carvalho RM. Ultimate tensile strength of tooth structures. Dent Mater 2004; 20 (04) 322-329
  • 42 Cuy JL, Mann AB, Livi KJ, Teaford MF, Weihs TP. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch Oral Biol 2002; 47 (04) 281-291
  • 43 Habelitz S, Marshall SJ, Marshall Jr GW, Balooch M. Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 2001; 46 (02) 173-183
  • 44 Meckel AH, Griebstein WJ, Neal RJ. Structure of mature human dental enamel as observed by electron microscopy. Arch Oral Biol 1965; 10 (05) 775-783
  • 45 Warshawsky H. Organization of crystals in enamel. Anat Rec 1989; 224 (02) 242-262
  • 46 Roy S, Basu B. Mechanical and tribological characterization of human tooth. Mater Charact 2008; 59 (06) 747-756
  • 47 Xu HH, Smith DT, Jahanmir S. et al. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res 1998; 77 (03) 472-480
  • 48 Osborn JW. The nature of the Hunter-Schreger bands in enamel. Arch Oral Biol 1965; 10 (06) 929-935
  • 49 Zheng J, Zhou ZR, Zhang J, Li H, Yu HY. On the friction and wear behaviour of human tooth enamel and dentin. Wear 2003; 255 (7-12) 967-974
  • 50 Kerebel B, Daculsi G, Kerebel LM. Ultrastructural studies of enamel crystallites. J Dent Res 1979; 58 (Spec Issue B) 844-851
  • 51 Jongebloed WL, Molenaar I, Arends J. Morphology and size-distribution of sound and acid-treated enamel crystallites. Calcif Tissue Res 1975; 19 (02) 109-123
  • 52 White SN, Luo W, Paine ML, Fong H, Sarikaya M, Snead ML. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel. J Dent Res 2001; 80 (01) 321-326
  • 53 Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat Nanotechnol 2010; 5 (08) 565-569
  • 54 Fridell RA, Lussi A, Crenshaw MA, Bawden JW. The in vitro uptake of fluoride by secretory and maturation stage bovine enamel. J Dent Res 1988; 67 (02) 487-490
  • 55 Arends J, Jongebloed WL. Crystallites dimensions of enamel. J Biol Buccale 1978; 6 (03) 161-171
  • 56 White AJ, Yorath C, ten Hengel V, Leary SD, Huysmans MCDNJM, Barbour ME. Human and bovine enamel erosion under ‘single-drink’ conditions. Eur J Oral Sci 2010; 118 (06) 604-609
  • 57 Flim GJ, Arends J. Diffusion of 45Ca in bovine enamel.. J Dent Res 1992; 71: 913-919
  • 58 Popowics TE, Rensberger JM, Herring SW. Enamel microstructure and microstrain in the fracture of human and pig molar cusps. Arch Oral Biol 2004; 49 (08) 595-605
  • 59 Urabe I, Nakajima S, Sano H, Tagami J. Physical properties of the dentin-enamel junction region. Am J Dent 2000; 13 (03) 129-135
  • 60 Field J, Waterhouse P, German M. Quantifying and qualifying surface changes on dental hard tissues in vitro. J Dent 2010; 38 (03) 182-190
  • 61 Attin T, Wegehaupt F, Gries D, Wiegand A. The potential of deciduous and permanent bovine enamel as substitute for deciduous and permanent human enamel: erosion-abrasion experiments. J Dent 2007; 35 (10) 773-777
  • 62 Humel MM, Oliveira MT, Cavalli V, Giannini M. Effect of storage and disinfection methods of extracted bovine teeth on bond strength to dentin. Braz J Oral Sci 2007; 6 (22) 1402-1406
  • 63 Field JC, Waterhouse PJ, German MJ. The early erosive and abrasive challenge: a profilometric, electron microscopic and microhardness study using human, bovine and ovine enamel. Eur J Prosthodont Restor Dent 2017; 25 (02) 93-100
  • 64 Dionysopoulos D, Tolidis K, Sfeikos T. Effect of air-abrasion pre-treatment with bioactive glass 45S5 on enamel surface loss after erosion/abrasion challenge. Dent Mater 2019; 35 (09) e193-e203
  • 65 Jost-Brinkmann PG. The influence of air polishers on tooth enamel. An in-vitro study. J Orofac Orthop 1998; 59 (01) 1-16
  • 66 Habelitz S, Marshall GW Jr, Balooch M, Marshall SJ. Nanoindentation and storage of teeth. J Biomech 2002; 35 (07) 995-998
  • 67 Monarca S, Garusi G, Gigola P, Spampinato L, Zani C, Sapelli PL. Decontamination of dental unit waterlines using disinfectants and filters. Minerva Stomatol 2002; 51 (10) 451-459
  • 68 Bland LA, Favero MS, Oxborrow GS, Aguero SM, Searcy BP, Danielson JW. Effect of chemical germicides on the integrity of hemodialyzer membranes. ASAIO Trans 1988; 34 (03) 172-175
  • 69 Attin T, Becker K, Roos M, Attin R, Paqué F. Impact of storage conditions on profilometry of eroded dental hard tissue. Clin Oral Investig 2009; 13 (04) 473-478
  • 70 Trentino AC, Soares AF, Duarte MAH, Ishikiriama SK, Mondelli RFL. Evaluation of pH levels and surface roughness after bleaching and abrasion tests of eight commercial products. Photomed Laser Surg 2015; 33 (07) 372-377
  • 71 Fujii M, Kitasako Y, Sadr A, Tagami J. Roughness and pH changes of enamel surface induced by soft drinks in vitro-applications of stylus profilometry, focus variation 3D scanning microscopy and micro pH sensor. Dent Mater J 2011; 30 (03) 404-410
  • 72 Turssi CP, Messias DCF, de Menezes M, Hara AT, Serra MC. Role of dentifrices on abrasion of enamel exposed to an acidic drink. Am J Dent 2005; 18 (04) 251-255
  • 73 British Standard Institution. British Standard Institution Location: United Kingdom Assessment of Surface Texture: Guidance and General Information; 1990 1–17
  • 74 Al-Salehi SK, Wood DJ, Hatton PV. The effect of 24h non-stop hydrogen peroxide concentration on bovine enamel and dentine mineral content and microhardness. J Dent 2007; 35 (11) 845-850
  • 75 Federation of European Producers of Abrasives. Available at: https://fepa-abrasives.org/abrasives/. Updated 2020
  • 76 Harris EF, Hicks JD. A radiographic assessment of enamel thickness in human maxillary incisors. Arch Oral Biol 1998; 43 (10) 825-831
  • 77 Bechtle S, Habelitz S, Klocke A, Fett T, Schneider GA. The fracture behaviour of dental enamel. Biomaterials 2010; 31 (02) 375-384
  • 78 Slop D, de Rooij JF, Arends J. Abrasion of enamel. I. An in vitro investigation. Caries Res 1983; 17 (03) 242-248
  • 79 Blacker SM, Chadwick RG. An in vitro investigation of the erosive potential of smoothies. Br Dent J 2013; 214 (04) E9
  • 80 Bhushan B. Modern Tribology Handbook. Boca Raton, FL: CRC Press; 2001
  • 81 Thomas TR. Rough Surfaces. 2nd ed. Singapore: World Scientific Publishing Company; 1998
  • 82 Radhakrishnan V. Effect of stylus radius on the roughness values measured with tracing stylus instruments. Wear 1970; 16 (05) 325-335
  • 83 Stachowiak GW, Batchelor AW, Stachowiak GB. Experimental methods in tribology: introduction. Tribol Ser 2004; 44: 1-12
  • 84 McCool JI. Assessing the effect of stylus tip radius and flight on surface topography measurements. Trans Asme J Tribol 1984; 106 (02) 202-210
  • 85 Chuenarrom C, Benjakul P. Comparison between a profilometer and a measuring microscope for measurement of enamel erosion. J Oral Sci 2008; 50 (04) 475-479
  • 86 Heurich E, Beyer M, Jandt KD. et al. Quantification of dental erosion—a comparison of stylus profilometry and confocal laser scanning microscopy (CLSM). Dent Mater 2010; 26 (04) 326-336
  • 87 Mitutoyo Surface Texture Parameter Manual for Mitutoyo SURFPAK Series of Surface Roughness Testers. Available at: https://www.mitutoyo.com/wp-content/uploads/2012/11/1984_Surf_Roughness_PG.pdf.
  • 88 Honório HM, Rios D, Júnior ESP, de Oliveira DSB, Fior FA, Buzalaf MAR. Effect of acidic challenge preceded by food consumption on enamel erosion. Eur J Dent 2010; 4 (04) 412-417
  • 89 Schlueter N, Hara A, Shellis RP, Ganss C. Methods for the measurement and characterization of erosion in enamel and dentine. Caries Res 2011; 45 (Suppl. 01) 13-23
  • 90 Rodriguez JM, Curtis RV, Bartlett DW. Surface roughness of impression materials and dental stones scanned by non-contacting laser profilometry. Dent Mater 2009; 25 (04) 500-505
  • 91 DeLong R, Pintado MR, Ko CC, Hodges JS, Douglas WH. Factors influencing optical 3D scanning of vinyl polysiloxane impression materials. J Prosthodont 2001; 10 (02) 78-85
  • 92 Chun JH, Pae A, Kim SH. Polymerization shrinkage strain of interocclusal recording materials. Dent Mater 2009; 25 (01) 115-120
  • 93 McCabe JF, Molyvda S, Rolland SL, Rusby S, Carrick TE. Two- and three-body wear of dental restorative materials. Int Dent J 2002; 52 (05) (Suppl. 02) 406-416
  • 94 Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH. Roughness parameters. J Mater Process Technol 2002; 123 (01) 133-145
  • 95 Zecchino M, Characterizing Surface Quality: Why Average Roughness Is Not Enough. Notes of Iveco Instrument; December, 2003:24–30. Available at: https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/SurfaceAnalysis/3DOpticalMicroscopy/ApplicationNotes/AN511-Characterizing_Surface_Quality-Why_Average_Roughne.pdf.
  • 96 Abbott EJ, Firestone FA. Specifying surface quality: a method based on accurate measurement and comparison. Mech Eng 1933; 55: 569-572
  • 97 Torrance AA. A simple datum for measurement of the Abbott curve of a profile and its first derivative. Tribol Int 1997; 30 (03) 239-244
  • 98 Boehm H-J. Parameters for evaluating the wearing behaviour of surfaces. Int J Mach Tools Manuf 1992; 32 (1-2) 109-113
  • 99 Bigerelle M, Iost A. A numerical method to calculate the Abbott parameters: a wear application. Tribol Int 2007; 40 (09) 1319-1334